解析高性能汽車電源設(shè)計(jì)的發(fā)展趨勢(shì)
發(fā)布時(shí)間:2017-02-04 責(zé)任編輯:wenwei
【導(dǎo)讀】2012年,歐洲、日本和美國(guó)的汽車市場(chǎng)將有超過(guò)半數(shù)的汽車安裝彩色顯示器、導(dǎo)航系統(tǒng)、衛(wèi)星通信以及其它車載信息娛樂(lè)系統(tǒng),因此,2012年汽車市場(chǎng)的電源需求將于傳統(tǒng)設(shè)計(jì)有很大差異。本文提供了汽車電源選擇及優(yōu)化的基本框架,首先給出了設(shè)計(jì)條件和應(yīng)用要求;隨后討論了一些通用電源架構(gòu)的應(yīng)用;最后介紹了如何選擇Maxim的汽車電源管理IC (PMIC)。
高可靠性、低成本、極短的研發(fā)周期等等相互沖突的設(shè)計(jì)要求迫使電源設(shè)計(jì)人員采用新的具有突破性的技術(shù)方案,而這些技術(shù)是傳統(tǒng)的汽車電源設(shè)計(jì)中不曾涉足的。
汽車電源設(shè)計(jì)的六項(xiàng)基本原則
大多數(shù)汽車電源架構(gòu)需要遵循六項(xiàng)基本原則:
輸入電壓VIN范圍:12V電池電壓的瞬變范圍決定了電源轉(zhuǎn)換IC的輸入電壓范圍。
典型的汽車電池電壓范圍為9V至16V,發(fā)動(dòng)機(jī)關(guān)閉時(shí),汽車電池的標(biāo)稱電壓為12V;發(fā)動(dòng)機(jī)工作時(shí),電池電壓在14.4V左右。但是,不同條件下,瞬態(tài)電壓也可能達(dá)到±100V。ISO7637-1行業(yè)標(biāo)準(zhǔn)定義了汽車電池的電壓波動(dòng)范圍。圖1和圖2所示波形即為ISO7637標(biāo)準(zhǔn)給出的部分波形,圖中顯示了高壓汽車電源轉(zhuǎn)換器需要滿足的臨界條件。除了ISO7637-1,還有一些針對(duì)燃?xì)獍l(fā)動(dòng)機(jī)定義的電池工作范圍和環(huán)境。大多數(shù)新的規(guī)范是由不同的OEM廠商提出的,不一定遵循行業(yè)標(biāo)準(zhǔn)。但是,任何新標(biāo)準(zhǔn)都要求系統(tǒng)具有過(guò)壓和欠壓保護(hù)。
圖1. 冷啟動(dòng)電壓波形
圖2. 拋負(fù)載電壓波形
散熱考慮:散熱需要根據(jù)DC-DC轉(zhuǎn)換器的最低效率進(jìn)行設(shè)計(jì)。
空氣流通較差甚至沒有空氣流通的應(yīng)用場(chǎng)合,如果環(huán)境溫度較高(> 30°C),外殼存在熱源(> 1W),設(shè)備會(huì)迅速發(fā)熱(> 85°C)。例如,大多數(shù)音頻放大器需要安裝在散熱片上,并需要提供良好的空氣流通條件以耗散熱量。另外,PCB材料和一定的覆銅區(qū)域有助于提高熱傳導(dǎo)效率,從而達(dá)到最佳的散熱條件。如果不使用散熱片,封裝上的裸焊盤的散熱能力限制在2W至3W (85°C)。隨著環(huán)境溫度升高,散熱能力會(huì)明顯降低。
將電池電壓轉(zhuǎn)換成低壓(例如:3.3V)輸出時(shí),線性穩(wěn)壓器將損耗75%的輸入功率,效率極低。為了提供1W的輸出功率,將會(huì)有3W的功率作為熱量消耗掉。受環(huán)境溫度和管殼/結(jié)熱阻的限制,將會(huì)明顯降低1W最大輸出功率。對(duì)于大多數(shù)高壓DC-DC轉(zhuǎn)換器,輸出電流在150mA至200mA范圍時(shí),LDO能夠提供較高的性價(jià)比。
將電池電壓轉(zhuǎn)換成低壓(例如:3.3V),功率達(dá)到3W時(shí),需要選擇高端開關(guān)型轉(zhuǎn)換器,這種轉(zhuǎn)換器可以提供30W以上的輸出功率。這也正是汽車電源制造商通常選用開關(guān)電源方案,而排斥基于LDO的傳統(tǒng)架構(gòu)的原因。
大功率設(shè)計(jì)(> 20W)對(duì)于熱管理要求比較嚴(yán)格,需要采用同步整流架構(gòu)。為了獲得高于單個(gè)封裝的散熱能力,避免封裝“發(fā)熱”,可以考慮使用外部MOSFET驅(qū)動(dòng)器。
靜態(tài)工作電流(IQ)及關(guān)斷電流(ISD):
隨著汽車中電子控制單元(ECU)數(shù)量的快速增長(zhǎng),從汽車電池消耗的總電流也不斷增長(zhǎng)。即使當(dāng)發(fā)動(dòng)機(jī)關(guān)閉并且電池電量耗盡時(shí),有些ECU單元仍然保持工作。為了保證靜態(tài)工作電流IQ在可控范圍內(nèi),大多數(shù)OEM廠商開始對(duì)每個(gè)ECU的IQ加以限制。例如歐盟提出的要求是:100µA/ECU。絕大多數(shù)歐盟汽車標(biāo)準(zhǔn)規(guī)定ECU的IQ典型值低于100µA。始終保持工作狀態(tài)的器件,例如:CAN收發(fā)器、實(shí)時(shí)時(shí)鐘和微控制器的電流損耗是ECU IQ的主要考慮因素,電源設(shè)計(jì)需要考慮最小IQ預(yù)算。
成本控制:OEM廠商對(duì)于成本和規(guī)格的折中是影響電源材料清單的重要因素。
對(duì)于大批量生產(chǎn)的產(chǎn)品,成本是設(shè)計(jì)中需要考慮的重要因素。PCB類型、散熱能力、允許選擇的封裝及其它設(shè)計(jì)約束條件實(shí)際受限于特定項(xiàng)目的預(yù)算。例如,使用4層板FR4和單層板CM3,PCB的散熱能力就會(huì)有很大差異。
項(xiàng)目預(yù)算還會(huì)導(dǎo)致另一制約條件,用戶能夠接受更高成本的ECU,但不會(huì)花費(fèi)時(shí)間和金錢用于改造傳統(tǒng)的電源設(shè)計(jì)。對(duì)于一些成本很高的新的開發(fā)平臺(tái),設(shè)計(jì)人員只是簡(jiǎn)單地對(duì)未經(jīng)優(yōu)化的傳統(tǒng)電源設(shè)計(jì)進(jìn)行一些簡(jiǎn)單修整。
位置/布局:在電源設(shè)計(jì)中PCB和元件布局會(huì)限制電源的整體性能。
結(jié)構(gòu)設(shè)計(jì)、電路板布局、噪聲靈敏度、多層板的互連問(wèn)題以及其它布板限制都會(huì)制約高芯片集成電源的設(shè)計(jì)。而利用負(fù)載點(diǎn)電源產(chǎn)生所有必要的電源也會(huì)導(dǎo)致高成本,將眾多元件集于單一芯片并不理想。電源設(shè)計(jì)人員需要根據(jù)具體的項(xiàng)目需求平衡整體的系統(tǒng)性能、機(jī)械限制和成本。
電磁輻射:
隨時(shí)間變化的電場(chǎng)會(huì)產(chǎn)生電磁輻射,輻射強(qiáng)度取決于場(chǎng)的頻率和幅度,一個(gè)工作電路所產(chǎn)生的電磁干擾會(huì)直接影響另一電路。例如,無(wú)線電頻道的干擾可能導(dǎo)致安全氣囊的誤動(dòng)作,為了避免這些負(fù)面影響,OEM廠商針對(duì)ECU單元制定了最大電磁輻射限制。
為保持電磁輻射(EMI)在受控范圍內(nèi),DC-DC轉(zhuǎn)換器的類型、拓?fù)浣Y(jié)構(gòu)、外圍元件選擇、電路板布局及屏蔽都非常重要。經(jīng)過(guò)多年的積累,電源IC設(shè)計(jì)者研究出了各種限制EMI的技術(shù)。外部時(shí)鐘同步、高于AM調(diào)制頻段的工作頻率、內(nèi)置MOSFET、軟開關(guān)技術(shù)、擴(kuò)頻技術(shù)等都是近年推出的EMI抑制方案。
應(yīng)用與功率需求
大多數(shù)系統(tǒng)電源的基本架構(gòu)選擇應(yīng)從電源要求以及汽車廠商定義的電池電壓瞬變波形入手。對(duì)于電流的要求應(yīng)該反映到電路板的散熱設(shè)計(jì)。表1歸納了大多數(shù)設(shè)計(jì)的電路及電壓要求。
表1. 通用電源及電壓要求¹
通用電源的拓?fù)浼軜?gòu)
圖3. 電源結(jié)構(gòu)選項(xiàng):Reg1:8V (CD/DVD驅(qū)動(dòng)器);Reg2:5V (µC);Reg3:3.3V (µC);Reg4:2.5V/1.8V (DSP);Reg5:1.2V (存儲(chǔ)器)。
與數(shù)字CMOS工藝類似,模擬BiCMOS也在不斷地縮小設(shè)計(jì)的幾何尺寸,以求獲得最佳的投資回報(bào),降低工藝開發(fā)的風(fēng)險(xiǎn)。但是,工藝優(yōu)化的方向并不符合汽車應(yīng)用的需求。例如:大多數(shù)集成工藝針對(duì)降低5.5V至6V輸入電壓范圍的器件成本進(jìn)行優(yōu)化,但尚未對(duì)9V至10V輸入器件的制造工藝進(jìn)行成本優(yōu)化。這也正是設(shè)計(jì)中需要產(chǎn)生中等電源,進(jìn)而產(chǎn)生低壓的原因。
以下列出了四種常用的電源架構(gòu),總結(jié)了最近三年汽車領(lǐng)域的典型設(shè)計(jì)架構(gòu)。當(dāng)然,用戶可以通過(guò)不同方式實(shí)現(xiàn)具體的設(shè)計(jì)要求,多數(shù)方案可歸納為這四種結(jié)構(gòu)中的一種。
方案1
該架構(gòu)為優(yōu)化DC-DC轉(zhuǎn)換器的效率、布局、PCB散熱及噪聲指標(biāo)提供了極大的靈活性。方案1的主要優(yōu)勢(shì)是:
增加核設(shè)計(jì)的靈活性。設(shè)計(jì)提供不同的電壓選項(xiàng),以滿足特定的設(shè)計(jì)要求。即使不是最低成本/最高效率的解決方案,增加一個(gè)獨(dú)立的轉(zhuǎn)換器有助于重復(fù)利用原有設(shè)計(jì)。
有助于合理利用開關(guān)電源/線性穩(wěn)壓器。例如,如果系統(tǒng)中提供為處理器供電的3.3V電源,相對(duì)于直接從汽車電池降壓到1.8V,從3.3V電壓產(chǎn)生1.8V 300mA的電源效率更高、成本也更低。如果新設(shè)計(jì)中需要更改電源電壓,舊的電源模塊不再滿足要求時(shí),設(shè)計(jì)人員可以很容易地選擇一個(gè)替代模塊,不會(huì)造成任何浪費(fèi)。
合理分配PCB散熱,這為選擇轉(zhuǎn)換器的位置及散熱提供了靈活性。
允許使用高性能、高性價(jià)比的低電壓模擬IC,與高壓IC相比,這種方案提供了更寬的選擇范圍。
另外需要注意的是:方案1占用較大的電路板面積、成本相對(duì)較高,對(duì)于有多路電源需求的設(shè)計(jì)來(lái)說(shuō)過(guò)于復(fù)雜。
方案2
該方案是高集成度與設(shè)計(jì)靈活性的折衷,與方案1相比,在成本、外形尺寸和復(fù)雜度方面具有一定的優(yōu)勢(shì)。
該方案特別適合兩路降壓輸出并需要獨(dú)立控制的應(yīng)用。例如,3.3V不間斷供電電源,而在需要時(shí)可以關(guān)閉5V電源,以節(jié)省IQ電流。另一種應(yīng)用是產(chǎn)生中等電源,例如5V,為低壓轉(zhuǎn)換器供電,利用這種方案可以省去一個(gè)產(chǎn)生8V的boost轉(zhuǎn)換器。
采用外置FET的雙輸出控制器可以提供與方案1相同的PCB布板靈活性,便于散熱。內(nèi)置FET的轉(zhuǎn)換器,設(shè)計(jì)人員應(yīng)注意不要在PCB的同一位置耗散過(guò)多的熱量。
方案3
這一架構(gòu)把多路高壓轉(zhuǎn)換問(wèn)題轉(zhuǎn)化成一路高壓轉(zhuǎn)換和一個(gè)高度集成的低壓轉(zhuǎn)換IC,相對(duì)于多輸出高壓轉(zhuǎn)換IC,高集成度低壓轉(zhuǎn)換IC成本較低,且容易從市場(chǎng)上得到。
這種方案有助于簡(jiǎn)化電源設(shè)計(jì),可以方便地從不同供應(yīng)商獲得替代器件。另外,高度集成的低壓IC要比多路高壓IC的成本低。
如果方案3中的低壓PMIC有兩路以上輸出,那么方案3將存在與方案4相同的缺陷。
方案3的主要劣勢(shì)是多路電壓集中在同一芯片,布板時(shí)需要慎重考慮PCB散熱問(wèn)題。
方案4
最新推出的高集成度PMIC可以在單芯片上集成所有必要的電源轉(zhuǎn)換和管理功能,突破了電源設(shè)計(jì)中的諸多限制。但是,高集成度也存在一定的負(fù)面影響。
在高集成度PMIC中,集成度與驅(qū)動(dòng)能力總是相互矛盾。例如,在產(chǎn)品升級(jí)時(shí),原設(shè)計(jì)中內(nèi)置MOSFET的穩(wěn)壓器可能無(wú)法滿足新設(shè)計(jì)中的負(fù)載驅(qū)動(dòng)要求。
把低壓轉(zhuǎn)換器級(jí)聯(lián)到高壓轉(zhuǎn)換器有助于降低成本,但這種方式受限于穩(wěn)壓器的開/關(guān)控制。例如,如果 5V電源關(guān)閉時(shí)必須開啟3.3V電源,就無(wú)法將3.3V輸入連接到5V電源輸出;否則將不能關(guān)閉5V電源,造成較高的靜態(tài)電流IQ。
EMI和負(fù)載點(diǎn)轉(zhuǎn)換器可能會(huì)制約核心PMIC的使用,電路板布局以及較長(zhǎng)的引線可能無(wú)法使用PMIC能夠提供的電源電壓。
Maxim的汽車電源解決方案
Maxim的汽車電源IC克服了許多電源管理問(wèn)題,能夠提供獨(dú)特的高性能解決方案。電源產(chǎn)品包括過(guò)壓保護(hù)和欠壓保護(hù)、微處理器監(jiān)控、開關(guān)轉(zhuǎn)換器和線性穩(wěn)壓器等高度集成的多功能PMIC,完全滿足汽車信息娛樂(lè)系統(tǒng)的供電需求。
Maxim通過(guò)了TS16949 (汽車質(zhì)量標(biāo)準(zhǔn))認(rèn)證,針對(duì)汽車產(chǎn)品配備了專門的支持隊(duì)伍,提供質(zhì)量認(rèn)證、客戶服務(wù)、本地銷售及應(yīng)用支持,擁有滿足汽車市場(chǎng)需求的IC設(shè)計(jì)資源。
Maxim的電源IC符合汽車級(jí)質(zhì)量認(rèn)證和生產(chǎn)要求,例如:AECQ100認(rèn)證、DFMEA、不同的溫度等級(jí)(包括85°C、105°C、125°C等)、特殊的封裝(有引出線的引腳或QFN,帶有裸焊盤或不帶裸焊盤)要求。
圖4. 汽車電源管理IC,汽車電源選型,請(qǐng)參考www.maximintegrated.com/Automotive。
高壓?jiǎn)温份敵鯬WM控制器
圖5. MAX15004/MAX15005汽車VFD供電電源,啟動(dòng)后,輸入工作電壓可低至2.5V,為VFD提供輸出過(guò)壓保護(hù)。
MAX15004/MAX15005為通用的電流模式PWM控制器,能夠配制成boost、反激、正激和SEPIC轉(zhuǎn)換器,IC工作在4.5V至40V輸入電壓范圍,允許在15kHz至500kHz范圍內(nèi)調(diào)節(jié)開關(guān)頻率。該款I(lǐng)C還允許同步到一個(gè)外部時(shí)鐘。
電流模式控制架構(gòu)具有出色的電源瞬態(tài)響應(yīng)特性和逐周期限流,有效簡(jiǎn)化頻率補(bǔ)償??删幊绦甭恃a(bǔ)償進(jìn)一步簡(jiǎn)化了設(shè)計(jì),60ns快速限流響應(yīng)時(shí)間和低至300mV的限流門限使得該控制器非常適合構(gòu)成高效、高頻DC-DC轉(zhuǎn)換器。器件包括內(nèi)部誤差放大器和1%精度的基準(zhǔn),便于構(gòu)成隔離或非隔離型原邊穩(wěn)壓器。
保護(hù)功能包括逐周期、“打嗝式”限流,輸出過(guò)壓保護(hù)和熱關(guān)斷。MAX15004/MAX15005采用16引腳TSSOP封裝,帶有裸焊盤或不帶裸焊盤。所有器件工作在-40°C至+125°C汽車級(jí)溫度范圍。
高壓?jiǎn)温份敵?、降壓型開關(guān)控制器
圖6. MAX1744/MAX1745為高壓(36V)、降壓型DC-DC控制器。
MAX1744為單路輸出、汽車級(jí)開關(guān)穩(wěn)壓器,能夠承受4.5V至36V瞬變電壓。器件采用專有的限流控制架構(gòu),提供出色的輕載和滿負(fù)荷效率,無(wú)需散熱器即可提供50W的輸出功率。MAX1745在關(guān)斷時(shí)僅消耗4µA電流,輕載時(shí)消耗90µA電流。IC規(guī)定工作在+125°C,提供3mm x 3mm、16引腳µMAX®封裝,帶有裸焊盤或不帶裸焊盤。MAX1745可通過(guò)外部電阻調(diào)節(jié)輸出電壓。
高壓?jiǎn)温份敵鯨DO
圖7. MAX15006/MAX15007為線性穩(wěn)壓器,靜態(tài)電流低至9µA,可理想用于汽車中的不間斷供電。
MAX15006/MAX15007為超低靜態(tài)電流的線性穩(wěn)壓器,能夠工作在4V至40V電壓范圍。IC可提供高達(dá)50mA的輸出電流,空載時(shí)僅消耗10µA的IQ。內(nèi)置p溝道調(diào)整管即使在滿負(fù)荷時(shí)也能保持極低的IQ。關(guān)斷時(shí),MAX15007僅消耗3µA電流。
MAX15006A/MAX15007A提供固定3.3V輸出,MAX15006B/MAX15007B提供固定5V輸出。MAX15007包括一個(gè)使能輸入,用于器件的通、斷控制。所有器件具有短路保護(hù),包括熱關(guān)斷。
MAX15006/MAX15007工作在-40°C至+125°C汽車級(jí)溫度范圍,這些器件提供節(jié)省空間的3mm x 3mm、6引腳TDFN和8引腳SO、增強(qiáng)散熱型封裝。
高壓雙輸出、降壓/升壓型開關(guān)轉(zhuǎn)換器
圖8. MAX5098/MAX5099可承受80V拋負(fù)載并可工作在低于6V的冷啟動(dòng)狀態(tài)。
MAX5098/MAX5099為2.2MHz、180°異相雙通道輸出開關(guān)調(diào)節(jié)器,內(nèi)置高邊FET。IC工作在4.5V至19V輸入電壓范圍,集成拋負(fù)載保護(hù)能夠承受高達(dá)80V的瞬態(tài)拋負(fù)載電壓。MAX5099內(nèi)部集成了兩個(gè)低邊MOSFET驅(qū)動(dòng)器,用于驅(qū)動(dòng)外部同步整流MOSFET。輸出1和輸出2可分別提供高達(dá)2A和1A的輸出電流。MAX5098能夠配制成升壓或降壓轉(zhuǎn)換器,MAX5099只能配置成降壓模式。
MAX5098/MAX5099還具有短路保護(hù)(“打嗝式”限流)和熱保護(hù)電路。IC工作在-40°C至+125°C溫度范圍,提供增強(qiáng)散熱的裸焊盤、5mm x 5mm、32引腳TQFN 或28引腳TSSOP封裝。
¹請(qǐng)注意:ECORUN條件中,汽車發(fā)動(dòng)機(jī)為臨時(shí)停止工作(例如:等待交通燈)。這種條件也稱為起-?;驘彡P(guān)閉。
本文來(lái)源于Maxim。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖