【導(dǎo)讀】三級(jí)管除了可以當(dāng)做交流信號(hào)放大器之外,也可以做為開關(guān)之用。嚴(yán)格說起來,三極管與一般的機(jī)械接點(diǎn)式開關(guān)在動(dòng)作上并不完全相同,但是它卻具有一些機(jī)械式開關(guān)所沒有的特點(diǎn)。
三級(jí)管除了可以當(dāng)做交流信號(hào)放大器之外,也可以做為開關(guān)之用。嚴(yán)格說起來,三極管與一般的機(jī)械接點(diǎn)式開關(guān)在動(dòng)作上并不完全相同,但是它卻具有一些機(jī)械式開關(guān)所沒有的特點(diǎn)。
圖 1 所示,即為三極管電子開關(guān)的基本電路圖。由下圖可知,負(fù)載電阻被直接跨接于三極管的集電極與電源之間,而位居三極管主電流的回路上。
輸 入電壓 Vin 則控制三極管開關(guān)的開啟(open) 與閉合(closed) 動(dòng)作,當(dāng)三極管呈開啟狀態(tài)時(shí),負(fù)載電流便被阻斷,反之,當(dāng)三極管呈閉合狀態(tài)時(shí),電流便可以流通。詳細(xì)的說,當(dāng) Vin 為低電壓時(shí),由于基極沒有電流,因此集 電極亦無電流,致使連接于集電極端的負(fù)載亦沒有電流,而相當(dāng)于開關(guān)的開啟,此時(shí)三極管乃勝作于截止(cut off)區(qū)。
同理,當(dāng) Vin 為高電壓時(shí),由于有基極電流流動(dòng),因此使集電極流過更大的放大電流,因此負(fù)載回路便被導(dǎo)通,而相當(dāng)于開關(guān)的閉合,此時(shí)三極管乃勝作于
飽和區(qū)(saturation)。
一、三極管開關(guān)電路的分析設(shè)計(jì)
由 于對(duì)硅三極管而言,其基射極接面之正向偏壓值約為 0.6 伏特,因此欲使三極管截止,Vin 必須低于 0.6 伏特,以使三極管的基極電流為零。通常在設(shè)計(jì)時(shí), 為了可以更確定三極管必處于截止?fàn)顟B(tài)起見,往往使 Vin 值低于 0.3 伏特。(838 電子資源)當(dāng)然輸入電壓愈接近零伏特便愈能保證三極管開關(guān)必處于截止?fàn)顟B(tài)。欲將電流傳送到負(fù)載上,則三極管的集電極與射極必須短路,就像機(jī)械開關(guān) 的閉合動(dòng)作一樣。欲如此就必須使 Vin 達(dá)到夠高的準(zhǔn)位,以驅(qū)動(dòng)三極管使其進(jìn)入飽和工作區(qū)工作,三極管呈飽和狀態(tài)時(shí),集電極電流相當(dāng)大,幾乎使得整個(gè)電源電壓 Vcc 均跨在負(fù)載電阻上,如此 則 VcE 便接近于 0,而使三極管的集電極和射極幾乎呈短路。在理想狀況下,根據(jù)奧姆定律三極管呈飽和時(shí),其集電極電流應(yīng)該為﹕
因此,基極電流最少應(yīng)為:
上式表出了 IC 和 IB 之間的基本關(guān)系,式中的β值代表三極管的直流電流增益,對(duì)某些三極管而言,其交流β值和直流β值之間,有著甚大的差異。欲使開關(guān)閉 合,則其 Vin 值必須夠高,以送出超過或等于(式 1) 式所要求的最低基極電流值。由于基極回路只是一個(gè)電阻和基射極接面的串聯(lián)電路,故 Vin 可由下式來求解﹕
一旦基極電壓超過或等于(式 2) 式所求得的數(shù)值,三極管便導(dǎo)通,使全部的供應(yīng)電壓均跨在負(fù)載電阻上,而完成了開關(guān)的閉合動(dòng)作。
總而言之,三極管接成圖 1 的電路之后,它的作用就和一只與負(fù)載相串聯(lián)的機(jī)械式開關(guān)一樣,而其啟閉開關(guān)的方式,則可以直接利用輸入電壓方便的控制,而不須采用 機(jī)械式開關(guān)所常用的機(jī)械引動(dòng)(mechanical actuator)﹑螺管柱塞(solenoid plunger)或電驛電樞(relay armature)等控制方式。
為了避免混淆起見,本文所介紹的三極管開關(guān)均采用 NPN 三極管,當(dāng)然 NPN 三極管亦可以被當(dāng)作開關(guān)來使用,只是比較不常見罷了。
例題 1
試解釋出在圖 2 的開關(guān)電路中,欲使開關(guān)閉合(三極管飽和) 所須的輸入電壓為何﹖并解釋出此時(shí)之負(fù)載電流與基極電流值解﹕由 2 式可知,在飽和狀態(tài)下,所有的供電電壓完全跨降于負(fù)載電阻上,因此
由方程式(1) 可知
因此輸入電壓可由下式求得﹕
圖 2 用三極管做為燈泡開關(guān)
由例題 1-1 得知,欲利用三極管開關(guān)來控制大到 1.5A 的負(fù)載電流之啟閉動(dòng)作,只須要利用甚小的控制電壓和電流即可。此外,三極管雖然流過大電流,卻不須 要裝上散熱片,因?yàn)楫?dāng)負(fù)載電流流過時(shí),三極管呈飽和狀態(tài),其 VCE 趨近于零,所以其電流和電壓相乘的功率之非常小,根本不須要散熱片。
二、三極管開關(guān)與機(jī)械式開關(guān)的比較
截至目前為止,我們都假設(shè)當(dāng)三極管開關(guān)導(dǎo)通時(shí),其基極與射極之間是完全短路的。事實(shí)并非如此,沒有任何三極管可以完全短路而使 VCE=0,大多數(shù)的小信號(hào)硅 質(zhì)三極管在飽和時(shí),VCE(飽和) 值約為 0.2 伏特,縱使是專為開關(guān)應(yīng)用而設(shè)計(jì)的交換三極管,其 VCE(飽和) 值頂多也只能低到 0.1 伏特左右,而且負(fù)載電流一高,VCE(飽和) 值還會(huì)有些許的上升現(xiàn)象,雖然對(duì)大多數(shù)的分析計(jì)算而言,VCE(飽和) 值可以不予考慮,但是在測(cè)試交換電路時(shí),必須明白 VCE(飽和) 值并非真的是 0。
雖然 VCE(飽和)的電壓很小,本身微不足道,但是若 將幾個(gè)三極管開關(guān)串接起來,其總和的壓降效應(yīng)就很可觀了,不幸的是機(jī)械式的開關(guān)經(jīng)常是采用串接的方式來工作的,如圖 3(a)所示,三極管開關(guān)無法模擬機(jī)械 式開關(guān)的等效電路(如圖 3(b)所示)來工作,這是三極管開關(guān)的一大缺點(diǎn)。
圖 3 三極管開關(guān)與機(jī)械式開關(guān)電路
幸好三極管開關(guān)雖然不適用于串接方式,卻可以完美的適用于并接的工作方式,如圖 4 所示者即為一例。三極管開關(guān)和傳統(tǒng)的機(jī)械式開關(guān)相較,具有下列四大優(yōu)點(diǎn)﹕
圖 4 三極管開關(guān)之并聯(lián)聯(lián)接
(1)三極管開關(guān)不具有活動(dòng)接點(diǎn)部份,因此不致有磨損之慮,可以使用無限多次,一般的機(jī)械式開關(guān),由于接點(diǎn)磨損,頂多只能使用數(shù)百萬 次左右,而且其接點(diǎn)易受污損而影響工作,因此無法在臟亂的環(huán)境下運(yùn)作,三極管開關(guān)既無接點(diǎn)又是密封的,因此無此顧慮。
(2)三極管開關(guān)的動(dòng)作速度較一般的開關(guān)為快,一般開關(guān)的啟閉時(shí)間是以毫秒 (ms)來計(jì)算的,三極管開關(guān)則以微秒(μs)計(jì)。
(3)三極管開關(guān)沒有躍動(dòng)(bounce) 現(xiàn)象。一般的機(jī)械式開關(guān)在導(dǎo)通的瞬間會(huì)有快速的連續(xù)啟閉動(dòng)作,然后才能逐漸達(dá)到穩(wěn)定狀態(tài)。
(4)利用三極管開關(guān)來驅(qū)動(dòng)電感性負(fù)載時(shí),在開關(guān)開啟的瞬間,不致有火花產(chǎn)生。反之,當(dāng)機(jī)械式開關(guān)開啟時(shí),由于瞬間切斷了電感性負(fù)載樣 上的電流,因此電感之瞬間感應(yīng)電壓,將在接點(diǎn)上引起弧光,這種電弧非但會(huì)侵蝕接點(diǎn)的表面,亦可能造成干擾或危害。
三、三極管開關(guān)的測(cè)試
極管開關(guān)不像機(jī)械式開關(guān)可以光憑肉眼就判斷出它目前的啟閉狀態(tài),因此必須利用電表來加以測(cè)試。在圖 5 所示的標(biāo)準(zhǔn)三極管開關(guān)電路中,當(dāng)開關(guān)導(dǎo)通時(shí),VEC 的讀值應(yīng)該為 0,反之當(dāng)開關(guān)切斷時(shí),VCE 應(yīng)對(duì)于 VCC。
三極管開關(guān)在切斷的狀況下,由于負(fù)載上沒有電流流過,因此也沒有壓降,所以全部的供應(yīng)電壓均跨降在開關(guān)的兩端,因此其 VCE 值應(yīng)等于 VCC,這和機(jī)械式開關(guān) 是完全相同的。如果開關(guān)本身應(yīng)導(dǎo)通而未導(dǎo)通,那就得測(cè)試 Vin 的大小了。欲保證三極管導(dǎo)通,其基極的 Vin 電壓值就必須夠高,如果 Vin 值過低,則問題就 出自信號(hào)源而非三極管本身了。假使在 Vin 的準(zhǔn)位夠高,驅(qū)動(dòng)三極管導(dǎo)通絕無問題時(shí),而負(fù)載卻仍未導(dǎo)通,那就要測(cè)試電源電壓是否正常了。
在導(dǎo)通的狀態(tài)下,硅三極管的 VBE 值約為 0.6 伏特,假使 Vin 值夠高,而 VBE 值卻高于和低于 0.6 伏特,例如 VBE 為 1.5 伏特或 0.2 伏特,這表示基 射極接面可能已經(jīng)損壞,必須將三極管換掉。當(dāng)然這一準(zhǔn)則也未必百分之百正確,許多大電流額定的功率三極管,其 VBE 值經(jīng)常是超過 1 伏特的,因此即使 VBE 的讀值達(dá)到 1.5 伏特,也未必就能肯定三極管的接面損壞,這時(shí)候最好先查閱三極管規(guī)格表后再下斷言。
一旦 VBE 正常且有基極電流流動(dòng)時(shí),便必須測(cè)試 VCE 值,假使 VCE 趨近于 VCC,就表示三極管的集基接面損壞,必須換掉三極管。假使 VCE 趨近于零伏特,而負(fù)載仍未導(dǎo)通,這可能是負(fù)載本身有開路現(xiàn)象發(fā)生,因此必須檢換負(fù)載。
圖 5 三極管開關(guān)電路,各主要測(cè)試電的電壓圖
當(dāng) Vin 降為低電壓準(zhǔn)位,三極管理應(yīng)截止而切斷負(fù)載,如果負(fù)載仍舊未被切斷,那可能是三極管的集基極和集射極短路,必須加以置換。
第二節(jié) 基本三極管開關(guān)之改進(jìn)電路
有時(shí)候,我們所設(shè)定的低電壓準(zhǔn)位未必就能使三極管開關(guān)截止,尤其當(dāng)輸入準(zhǔn)位接近 0.6 伏特的時(shí)候更是如此。想要克服這種臨界狀況,就必須采取修正步驟,以保證三極管必能截止。圖 6 就是針對(duì)這種狀況所設(shè)計(jì)的兩種常見之改良電路。
圖 6 確保三極管開關(guān)動(dòng)作,正確的兩種改良電路
圖 6(a) 的電路,在基射極間串接上一只二極管,因此使得可令基極電流導(dǎo)通的輸入電壓值提升了 0.6 伏特,如此即使 Vin 值由于信號(hào)源的誤動(dòng)作而接近 0.6 伏特時(shí), 亦不致使三極管導(dǎo)通,因此開關(guān)仍可處于截止?fàn)顟B(tài)。圖 6(b)的電路加上了一只輔助 - 截止(hold-off)電阻 R2,適當(dāng)?shù)?R1,R2 及 Vin 值設(shè)計(jì), 可于臨界輸入電壓時(shí)確保開關(guān)截止。由圖 6(b)可知在基射極接面未導(dǎo)通前(IB0),R1 和 R2 形成一個(gè)串聯(lián)分壓電路,因此 R1 必跨過固定(隨 Vin 而 變) 的分電壓,所以基極電壓必低于 Vin 值,因此即使 Vin 接近于臨界值(Vin=0.6 伏特) ,基極電壓仍將受連接于負(fù)電源的輔助 - 截止電阻所拉下,使低于 0.6 伏特。由于 R1,R2 及 VBB 值的刻意設(shè)計(jì),只要 Vin 在高值的范圍內(nèi),基極仍將有足 夠的電壓值可使三極管導(dǎo)通,不致受到輔助 - 截止電阻的影響。
加速電容器(speed-up capacitors)
在 要求快速切換動(dòng)作的應(yīng)用中,必須加快三極管開關(guān)的切換速度。圖 7 為一種常見的方式,此方法只須在 RB 電阻上并聯(lián)一只加速電容器,如此當(dāng) Vin 由零電壓往上 升并開始送電流至基極時(shí),電容器由于無法瞬間充電,故形同短路,然而此時(shí)卻有瞬間的大電流由電容器流向基極,因此也就加快了開關(guān)導(dǎo)通的速度。稍后,待充電 完畢后,電容就形同開路,而不影響三極管的正常工作。
圖 7 加了加速電容器的電路
一旦輸入電壓由高準(zhǔn)位降回零電壓準(zhǔn)位時(shí),電容器會(huì)在極短的時(shí)間內(nèi)即令基射極接面變成反向偏壓,而使三極管開關(guān)迅速切斷,這是由于電容器的左端原已充電為正電 壓,如圖 6-9 所示,因此在輸入電壓下降的瞬間,電容器兩端的電壓無法瞬間改變?nèi)詫⒕S持于定值,故輸入電壓的下降立即使基極電壓隨之而下降,因此令基射極 接面成為反向偏壓,而迅速令三極管截止。適當(dāng)?shù)倪x取加速電容值可使三極管開關(guān)的切換時(shí)間減低至幾十分之微秒以下,大多數(shù)的加速電容值約為數(shù)百個(gè)微微法拉 (pF) 。
有時(shí)候三極管開關(guān)的負(fù)載并非直接加在集電極與電源之間,而是接成圖 8 的方式,這種接法和小信號(hào)交流放大器的電路非常接近,只 是少了一只輸出耦合電容器而已。這種接法和正常接法的動(dòng)作恰好相反,當(dāng)三極管截止時(shí),負(fù)載獲能,而當(dāng)三極管導(dǎo)通時(shí),負(fù)載反被切斷,這兩種電路的形式都是常 見的,因此必須具有清晰的分辨能力。
圖 8 將負(fù)載接于三極管開關(guān)電路的改進(jìn)接法
圖騰式開關(guān)(Totem-pole switches)
假使圖 8 的三極管開關(guān)加上了電容性負(fù)載(假定其與 RLD 并聯(lián)) ,那么在三極管截止后,由于負(fù)載電壓必須經(jīng)由 RC 電阻對(duì)電容慢慢充電而建立,因此電容量或電阻值愈大,時(shí)間常數(shù)(RC) 便愈大,而使得負(fù)載電壓之上升速率愈慢,在某些應(yīng)用中,這種現(xiàn)象是不容許的,因此必須采用圖 9 的改良電路。
圖騰式電路是將一只三極管直接迭接于另一三極管之上所構(gòu)成的,它也因此而得名。欲使負(fù)載獲能,必須使 Q1 三極管導(dǎo)通,同時(shí)使 Q2 三極管截?cái)?,如此?fù)載便可經(jīng) 由 Q1 而連接至 VCC 上,欲使負(fù)載去能,必須使 Q1 三極管截?cái)?,同時(shí)使 Q2 三極管導(dǎo)通,如此負(fù)載將經(jīng)由 Q2 接地。由于 Q1 的集電極除了極小的接點(diǎn)電阻外, 幾乎沒有任何電阻存在(如圖 9 所示) ,因此負(fù)載幾乎是直接連接到正電源上的,也因此當(dāng) Q1 導(dǎo)通時(shí),就再也沒有電容的慢速充電現(xiàn)象存在了。所以可說 Q1“將負(fù)載拉起”,而稱之為“挽起 (pull up) 三極管”,Q2 則稱為“拉下(pull down) 三極管”。圖 9 左半部的輸入控制電路,負(fù)責(zé) Q1 和 Q2 三極管的導(dǎo)通與截?cái)嗫刂?,但是必須確保 Q1 和 Q2 使不致同時(shí)導(dǎo)通,否則將使 VCC 和地之間經(jīng)由 Q1 和 Q2 而形同短路,果真如此,則短路的大電流至少將使一只三極管燒毀。因此圖騰式三極管開關(guān)絕對(duì)不可如圖 6-4 般地采用并聯(lián)方式來使用,否則只要圖騰上方的 三極管 Q1 群中有任一只導(dǎo)通,而下方的 Q2 群中又恰好有一只導(dǎo)通,電源便經(jīng)由導(dǎo)通之 Q1 和 Q2 短路,而造成嚴(yán)重的后果。
第三節(jié) 三極管開關(guān)之應(yīng)用
晶體管開關(guān)最常見的應(yīng)用之一,是用以驅(qū)動(dòng)指示燈,利用指示燈可以指示電路某特定點(diǎn)的動(dòng)作狀況,亦可以指示馬達(dá)的控制器是否被激勵(lì),此外亦可以指示某一限制開關(guān)是否導(dǎo)通或是某一數(shù)字電路是否處于高電位狀態(tài)。
舉例而言,(a)即是利用晶體管開關(guān)來指示一只數(shù)字正反器(flip-flop)的輸出狀態(tài)。假使正反器的輸出為高準(zhǔn)位(一般為 5 伏特) ,晶體管開關(guān)便被導(dǎo)通,而令指示燈發(fā)亮,因此操作員只要一看指示燈,便可以知道正反器目前的工作狀況,而不須要利用電表去檢測(cè)。
有時(shí)信號(hào)源(如正反器)輸出電路之電流容量太小,不足以驅(qū)動(dòng)晶體管開關(guān),此時(shí)為避免信號(hào)源不勝負(fù)荷而產(chǎn)生誤動(dòng)作,便須采用圖 10(b) 所示的改良電路,當(dāng)輸出為高準(zhǔn)位時(shí),先驅(qū)動(dòng)射極隨耦晶體管 Q1 做電流放大后,
(a) 基本電路圖 (b) 改良電路
再使 Q2 導(dǎo)通而驅(qū)動(dòng)指示燈,由于射極隨耦級(jí)的輸入阻抗相當(dāng)高,因此正反器之須要提供少量的輸入電流,便可以得到滿意的工作。
在工業(yè)設(shè)備中,往往必須利用固態(tài)邏輯電路來擔(dān)任控制的工作,有關(guān)數(shù)字邏輯電路的原理,將在下一章詳細(xì)加以介紹,在此為說明界面電路起見,先將工業(yè)設(shè)備的控制電路分為三大部份﹕(1)輸入部份,(2)邏輯部份,(3)輸出部份。
為達(dá)到可靠的運(yùn)作,工業(yè)設(shè)備的輸入與輸出部份通常工作于較高的電壓準(zhǔn)位,一般為 220 伏特。而邏輯部份卻是操作于低電壓準(zhǔn)位的,為了使系統(tǒng)正常工作,便必須 使這兩種不同的電壓準(zhǔn)位之間能夠溝通,這種不同電壓間的匹配工作就稱做界面(interface)問題。擔(dān)任界面匹配工作的電路,則稱為界面電路。三極管 開關(guān)就經(jīng)常被用來擔(dān)任此類工作。
圖 11 利用三極管開關(guān)做為由高壓輸入控制低壓邏輯的界面電路之實(shí)例,當(dāng)輸入部份的微動(dòng)開關(guān)閉合時(shí),降壓變 壓器便被導(dǎo)通,而使全波整流濾波電路送出低壓的直流控制信號(hào),此信號(hào)使三極管導(dǎo)通,此時(shí)集電極電壓降為 0(飽和)伏特,此 0 伏特信號(hào)可被送入邏輯電路中, 以表示微動(dòng)開關(guān)處于閉合狀態(tài)。
反之,若微動(dòng)開關(guān)開啟,變壓器便不通電,而使三極管截止,此時(shí)集電極電壓便上升至 VCC 值,此一 VCC 信 號(hào),可被送入邏輯電路中,藉以表示微動(dòng)開關(guān)處于開啟狀態(tài)。在圖 11 之中,邏輯電路被當(dāng)作三極管的負(fù)載,連接于集電極和地之間(如圖 11) ,因此三極管開關(guān)電路的 R1,R2 和 RC 值必須慎加選擇,以保證三極管只工作于截止區(qū)與飽和區(qū),而不致工作于主動(dòng)(線性) 區(qū)內(nèi)。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。