【導讀】低功耗藍牙(BLE)被廣泛運用于那些需要采集數(shù)據(jù)并將它們傳送至指定目的地的低功耗無線通信應用。在這些應用中,各類傳感器需要由某種形式的能源供電,以采集數(shù)據(jù),并通過BLE發(fā)送。使用有線電源為這些傳感器供電一般不具可行性,例如有時候有些傳感器是位于人體上的。電池供電型傳感器受電池壽命的限制,需要頻繁充電。如果某位工程師真正需要設計一款安裝后就無需打理的BLE傳感器應用,該系統(tǒng)就需要利用光、運動、壓力或熱量等周圍環(huán)境中未被利用的能量。
這就是能量采集技術(shù)的用武之地。能量采集是一種從外部能源采集能量并用它為嵌入式設備供電的新方法。但是,在能夠可靠地運用基于能量采集技術(shù)的BLE傳感器節(jié)點之前,我們需要克服一些挑戰(zhàn),尤其是在低功耗系統(tǒng)設計中。本文將闡述其中的某些挑戰(zhàn)以及應對方法。
正文:
智能手機等設備給我們的日常生活帶來了許多重要改變。我們通過手機來獲取能夠直接實時地影響我們的生活、與我們的健康、環(huán)境甚至購物方式相關(guān)的信息。然而,大多數(shù)信息必需被“拉”出來,即通過一條與另一個設備的連接獲取它們,或者通過搜索網(wǎng)絡獲取它們。這些方法要求用戶在需要數(shù)據(jù)時發(fā)起一個操作。但是用戶有時甚至不知道要找什么或到何處去找,比如說當他們尋找店內(nèi)某款產(chǎn)品的售價時。
解決辦法就是擁有一個能夠向用戶實時“推送”消息的系統(tǒng)。由于智能手機是向用戶推送信息的最佳途徑,該系統(tǒng)應能便捷有效地向其發(fā)送信息。這就是Beacon的用武之地。
在無線技術(shù)中, Beacon是一個廣播消息的系統(tǒng),目的是讓附近的設備接收到這些消息。Beacon能夠輕而易舉地向用戶設備傳送數(shù)據(jù),而且無需用戶操作。智能手機等現(xiàn)有設備支持可用于實現(xiàn)Beacon功能的各種方法。為了確保Beacon得到廣泛運用,其中包括得到主流設備的支持、互操作性、較低的安裝成本和低功耗運行,BLE 將成為Beacon通信的不二選擇。
低功耗藍牙(BLE)被廣泛運用于那些需要在較小范圍傳送數(shù)據(jù)的低功耗無線通信應用。無線傳感器節(jié)點(WSN)就是一個例子。數(shù)據(jù)被從傳感器讀出,通常被發(fā)送到一部智能手機。這些傳感器節(jié)點中的典型應用流程如下圖所示:
圖1 BLE傳感器設備中的典型流程
這些Beacon/傳感器需要由某種能源供電,以保證能夠連續(xù)運行和維持整體設備的尺寸。使用無線電源為這些傳感器供電一般不具可行性,因為這些傳感器要么是位于人體上,要么位于遠端,因此使用線纜供電的設計行不通。電池供電型傳感器存在電池壽命有限、需要頻繁充電、處理時破壞環(huán)境等問題。
如果我們真的想要無需任何維護的Beacon,我們就需要利用光、運動、壓力或熱量等周圍環(huán)境中未被利用的能量。這能夠?qū)崿F(xiàn)“安裝后即無需打理”,使Beacon在其整個生命周期內(nèi)都能得到供電。
這就是能量采集技術(shù)的用武之地。能量采集是指從周圍環(huán)境采集未被利用的能量并進行存儲。所存儲的能量用于為WSN設備供電,采集傳感器數(shù)據(jù),并通過BLE傳輸數(shù)據(jù)。
圖2 基于能量采集技術(shù)的WSN設備的框圖
能量采集系統(tǒng)(EHS)是一個電路,其中包括一個能量采集器件(EHD),一個能量采集PMIC和一個儲能器件。 EH PMIC使用EHD(如太陽能電池、振動傳感器和壓電器件)提供的能量對儲能器件(通常是一個電容器)進行“涓流”充電。EHS然后使用所存儲的電荷向另一個嵌入式設備提供能量。EHS的輸出功率隨WSN的狀態(tài)變化而改變。當WSN處于活動狀態(tài)時,能量被消耗,EHS的輸出電壓開始下降。當其處于低功耗狀態(tài)時,由于儲能器件得到充電,EHS的輸出電壓開始升高。下圖顯示了EHS的輸出電壓隨嵌入式設備的狀態(tài)變化而改變的過程。
圖3 EH的輸出電壓隨設備狀態(tài)變化而改變
對于EHS供電型設備,活動狀態(tài)下所消耗的能量不應超過EHS中的可用能量。圖4顯示了一個EHS供電型系統(tǒng),其活動狀態(tài)下的能耗超過了EHS所能提供的能量。EHS的輸出電壓逐漸下降,直到完全停止輸出。
圖4 WSN因電能不足關(guān)機
這意味著嵌入式系統(tǒng)的方方面面都應得到能量優(yōu)化,這樣它才能在EHS的供電下無縫運行。此類系統(tǒng)中有很多子系統(tǒng),而它們可能非常耗電,需要得到優(yōu)化才能確保它們不會拉低EH的輸出電壓。功耗優(yōu)化的關(guān)鍵領(lǐng)域包括:
1) CPU的時鐘頻率:
系統(tǒng)時鐘頻率決定了例行程序的處理速度以及期間所消耗的能量。時鐘越快意味著處理速度越快,但電流消耗也越高。此外,每個設備都有最低和最高時鐘頻率要求,不能超出該要求。
對于基于EHS的設計,可以根據(jù)以下兩個因素選擇一個優(yōu)化型時鐘頻率:
a) 平均電流消耗
b) 峰值電流消耗
EHS的容量必需兼顧這兩個因素。平均電流是活動狀態(tài)下所需的時間平均電流,而峰值電流是活動狀態(tài)下的瞬時最大電流要求,通常高于平均電流。有可能發(fā)生以下情況:所需的平均電流在EHS的容量之內(nèi),但峰值電流將導致EHS突然耗盡能量,從而導致電壓降至截止電壓以下。請注意,處理時間是平均電流消耗計算的一部分。
下圖顯示了某個例行程序在兩個不同頻率下(第一個是48 MHz,第二個是12 MH)的功耗-時間圖。
圖5 48 MHz頻率下處理某個例行程序的電流消耗
圖612 MHz頻率下處理某個例行程序的電流消耗
在本例中,48 MHz頻率下處理的例行程序使用了約300μs的時間完成,并在此期間消耗了約10 mA的電流。12 MHz頻率下處理的例行程序使用了1.1 ms的時間完成,并在此期間僅消耗了4mA的電流。此過程在12 MHz下的平均電流消耗更高,但峰值電流要求卻更低。取決于EHS的容量,我們可以采用一個較短的48 MHz時鐘設置,或一個較長的12 MHz時鐘設置,或結(jié)合采用兩者,讓時鐘頻率在不同的過程之間來回切換。在選擇優(yōu)化型系統(tǒng)頻率時,我們應該考慮這種電流分配。
2) 低功耗設備啟動
嵌入式設備獲得供電后,它將完成一個啟動程序,然后才能執(zhí)行應用代碼。一個典型的啟動程序包括:
a) 初始化內(nèi)存
b) 設置中斷向量
c) 配置外設和通用寄存器
d) 初始化外部時鐘(如果有的話)。
這四個步驟的每一步都需占用CPU處理時間才能完成,因此也要消耗能量。所消耗的能量取決于所使用的設備、系統(tǒng)時鐘頻率、所初始化的內(nèi)存/寄存器的容量以及設置外部時鐘所需的時間。因此,啟動過程將消耗大量電能,必需得到優(yōu)化才能確保不消耗過多的EH輸出。編寫啟動代碼時應考慮以下因素:
a) 只初始化那些將被使用的內(nèi)存和寄存器部分,其它部分維持默認值。
b) 大多數(shù)無線系統(tǒng)需要高精度外部時鐘。這些外部時鐘(如外部時鐘振蕩器和手表晶體振蕩器)在啟動后有一個較長的穩(wěn)定時間。我們不應讓系統(tǒng)在活動狀態(tài)下等待時鐘穩(wěn)定下來,而應將其置于低功耗狀態(tài)(睡眠/深度睡眠狀態(tài)),只有在準備使用它時再喚醒它。我們可以使用一個內(nèi)部定時器來實現(xiàn)這個目的。
3) 低功耗系統(tǒng)啟動
一旦設備開始執(zhí)行應用代碼,通常需要啟動系統(tǒng)中的各個外設。這些外設可能位于設備之中,如ADC,也可能位于設備之外,如某個傳感器。單個外設的啟動時間可能不長,但所有外設的總處理時間可能長到足以耗盡EHS中存儲的能量。
我們應該計算指定CPU頻率下的外設啟動時間,然后確定整體啟動所有外設所需的能量預算是否可行(較快),或是否需要將啟動程序分為多個階段(較慢)。
4) 分階段應用處理
設備將有不同的應用例行程序,它們需要自己的CPU帶寬。這些例行程序可能是為了配置某個外設,從傳感器接收數(shù)據(jù),執(zhí)行計算,管理事件或中斷。我們應該確保處理所用能量不超過EHS的容量。如果超過了,應將它們分為較小的子例行程序,并分階段管理它們。這可以將EHS上的負荷分成多個可管理的電流脈沖,從而讓EHS能夠在活動的CPU進程之間進行充電。
此外,在各個階段之間,應將系統(tǒng)置于低功耗模式,并將一個計數(shù)器或Watchdog計時器用作喚醒源,作為中斷。由于系統(tǒng)必需在該模式下保持較長時間,期間的電流要求應盡可能低。
5) 無線傳輸
采集數(shù)據(jù)后,必需通過BLE傳輸它們。傳輸可以通過一條BLE連接或BLE廣播完成,但支持能量采集的Beacon只能采用BLE廣播,這是因為使用一條連接傳輸數(shù)據(jù)之前,需要消耗大量能量建立該連接。
通常而言,無線操作,無論是發(fā)送(Tx)還是接受(Rx),是無線設備中耗能最多的操作。我們應確保BLE操作是一個獨立的過程,只有在EH輸出能夠提供足夠的峰值電流時才與其它過程結(jié)合在一起。
賽普拉斯的基于電源管理IC(PMIC)的能量采集器為傳感器和網(wǎng)絡提供一種無電池技術(shù)。它們精準的輸出功率控制功能和高效的能量采集功能使它們成為小型無線和Beacon應用的理想選擇。它們既可以獨立用作電源,或與鋰電池等其它電池設備配合使用,用于延長設備的工作壽命。一個EH PMIC可以從一個低電壓開始,適應應用的需求。MB39C831等某些產(chǎn)品具備最大功率點跟蹤(MPPT) 功能。MPPT可讓內(nèi)置的DC/DC轉(zhuǎn)換器通過跟蹤輸入功率控制輸出充電功率,從而最大程度提高功率輸出。MB39C811等PMIC支持雙采集輸入,可以從兩個不同的源采集能量。S6AE101A等優(yōu)化型PMIC(太陽能或光能EHD優(yōu)化型)具備極低的啟動和靜態(tài)功耗,可以使用一個很小的太陽能電池。
無電池式無線Beacon的另一個考慮因素是MCU的選擇。被集成為SoC等可編程系統(tǒng)、同時支持各種低功耗模式的MCU是此類應用的理想選擇。賽普拉斯的可編程片上系統(tǒng)(PSoC)可與那些可用于對接傳感器的各類外設緊密集成。尤其是PSoC 4 BLE,它包含多個低功耗外設以及一個BLE射頻單元和BLE協(xié)議棧,從而提供了一個真正的單芯片BLE傳感器節(jié)點。此外,其對超低功耗模式的支持還能讓系統(tǒng)與能量采集器、紐扣電池等小型電源無縫配合。實踐證明,這些能量采集器外加PSoC是無電池型BLE傳感器節(jié)點應用的最佳設計。
有關(guān)PSoC 4 BLE的更多信息,請參閱應用筆記AN91267 ,您還可以參閱應用筆記AN92584,詳細了解如何進一步優(yōu)化BLE系統(tǒng)的功耗。請點擊此處,詳細了解賽普拉斯的PMIC解決方案以及它們的最新特性。
附錄
A1:EH供電型BLE傳感器節(jié)點中各個過程的示波器屏幕截圖
1) EHS的輸出電壓隨CPU 活動的變化。黃色信號是EHS的輸出電壓,綠色信號是嵌入式設備消耗的電流。綠色峰值是CPU活動期間的電流消耗,平直信號是設備處于低功耗模式時的電流消耗。
請注意,由于能量被消耗,EHS的輸出電壓在每次CPU活動時(綠色峰值信號)都會下降。另請注意,低功耗狀態(tài)期間電壓會恢復,這是因為EHS對儲能器件進行了充電。
2) EHS內(nèi)部不對儲能器件進行充電時,EHS的輸出電壓隨CPU 活動的變化。請注意,由于能量被耗盡,電壓降至截止電壓以下, EHS輸出此時會被關(guān)閉。
3) 設備啟動時的電流消耗(綠色信號)。
4) EH供電型Beacon的BLE(TX)活動
【推薦閱讀】
電壓模式、遲滯和基于遲滯:選擇哪一種呢?
如何降低MOSFET損耗并提升EMI性能
電路設計中電阻的選擇及其作用
DC/DC加強絕緣方案解決變頻器母線電壓監(jiān)測難題
溫升測試與環(huán)境溫度測試的區(qū)別及聯(lián)系