- 一種硬件細分方法的研究與應用
- 采取純硬件進行細分的方法
- 實現(xiàn)高倍頻細分
1 引 言
目前,各類伺服驅動器及其應用中廣泛采用光柵裝置作為速度測量、位置測量的敏感元件。而且,廣泛采用兩路正交方波的形式,系統(tǒng)的實時性要求極高。因此,對于光柵編碼器的信號的細分等主要處理環(huán)節(jié),一方面集中考慮提高分辨率的問題,同時,需要考慮實時性的問題。
盡管高速單片機、DSP等高速數字處理器件的應用可以極大地改善系統(tǒng)的實時性,但是做除法運算仍需較長的時間,大約為幾百微秒,無法滿足系統(tǒng)實時性的要求,因此,軟件細分的方法受到了限制。
目前,有很多采取純硬件進行細分的方法,如,電阻鏈細分,空間細分,鎖相倍頻,還有兩種方法的結合使用等。上述幾種方法在實際應用中被廣泛采用,特別是電阻鏈細分,在低倍頻的情況下是一種很好的方案。但是在高倍頻的情況下,不可避免地出現(xiàn)大量使用比較器的情況,以及比較器死區(qū)(滯后區(qū))問題,難以調節(jié)??臻g細分的方法中,主要解決的問題是切割電平精準的問題,其中的三角波切割三角波的方案有很多優(yōu)點,可以改變使用過零比較造成的細分誤差。但是仍然存在大量使用比較器的問題,調節(jié)起來比較繁瑣。鎖相倍頻細分的方法,一方面,成本較前兩種高,另一方面,受環(huán)境溫度的影響比較大,實際的應用中很少采用。本文從原理上考慮了一種新的細分方案,使用取絕對值,八卦限理論,利用ASIC器件(速度為納秒級)對信號進行邏輯運算和處理等一整套純粹硬件的信號細分方案,并通過調試和實際應用,驗證了該方案的可行性。
2 細分原理及框圖
細分主要由以下幾個部分構成,取絕對值、提取卦限信號、A/D轉換、查細分表、邏輯運算等。系統(tǒng)框圖如圖1所示。 濾波、放大、整形電路對于輸入原始信號sinx、cosx進行初步處理,在幅值、對稱性、正交性等方面滿足后續(xù)電路的要求。取絕對值電路根據二極管截止導通特性,并結合基本運算放大器的基本工作原理,設計硬件電路,使其uo=|ui|輸出,實現(xiàn)對輸入信號的倍頻,兩路信號交錯形成八個卦區(qū)以及相應的卦限信號。
A/D轉換模塊對絕對值信號進行采樣轉化,如圖2所示:模擬多路開關在卦限控制信號的作用下,對絕對值信號進行選擇,其輸出分別作為A/D轉換的輸入信號和參考信號。A/D轉換受控于采樣控制信號,其輸出數據與采樣時刻的相位信號對應。 如果將該數據與相位之間的對應關系用一張表來描述,就是我們所建立的細分表。但是由于細分倍數的不同,兩者之間并不是一一對應關系。
[page]
3 硬件設計與調試
從原理上可以看出,該細分模塊的技術關鍵是比較器整形產生的卦限信號和A/D模塊產生的地址信號必須同步,這是能否正確細分的關鍵。因此,在電路設計過程中,比較器的滯后及其抗干擾能力是必須考慮和解決的問題。在抗干擾方面,采用差分放大,可以有效地抑制共模干擾??紤]其滯后問題,采用整形電路與取絕對值電路分離,可以通過調節(jié)各個運放的直流參數,使得卦限信號與絕對值信號能夠近似同步,否則,產生的細分方波將會在過零處變得混亂。如圖3所示,對其中sinx信號取絕對值及整形,這樣一來,既方便了調試,也避免了干擾及比較器的滯后問題。 邏輯控制電路及運算模塊主要完成對A/D轉換模塊的采樣控制、讀存儲器(細分表)、運算輸出細分正交方波等邏輯。整個模塊由FPGA來實現(xiàn)。外圍晶振提供10MHz的時鐘,由分頻模塊進行分頻,實現(xiàn)周期為2μs(滿足系統(tǒng)最大500kHz的反饋要求)的脈沖列作為采樣控制信號。在A/D轉換模塊完成采樣轉換并且轉換結束信號/INT為低電平時,此時,卦限信號及地址信號在存儲器的地址信號線上有效,在FPGA內部經過邏輯判斷后,發(fā)出讀(/RD)命令。讀取的數據經鎖存后提供給后序運算模塊,經判斷運算后輸出正交細分方波。
4 檢測及檢測結果 如圖4所示,我們搭建了細分檢測硬件平臺,由標定系統(tǒng)一維平轉臺和同軸的圓光柵編碼器構成。數顯裝置顯示了標定轉臺實際轉過的角度,同時,主機通過接口電路對細分方波進行計數并顯示,經過多次測量,兩顯示值之間的差e≤1,即,小于等于一個當量,達到了設計目的。同時,通過伺服驅動的一維平轉臺系統(tǒng)及檢測機構來定量地檢測分析細分誤差,初始位置:3′26.3″,末位置:2′50.7″,差值:3′26.3″-2′50.7″=35.6″,36.0″-35.6″=0.4″,結果如表1所示。 5 結束語
采用純硬件的手段可以滿足系統(tǒng)實時性的要求,采樣速度為2μs。同時,采用該方法可以實現(xiàn)高倍頻細分,滿足大多數系統(tǒng)對于兩路正交反饋方波的需求,可以在光柵編碼器信號處理中采用。