中心論題:
- 分頻式鎖相環(huán)倍頻原理
- 系統(tǒng)組成與設(shè)計(jì)
- 系統(tǒng)實(shí)驗(yàn)結(jié)果
解決方案:
- 鎖相電路的仿真和設(shè)計(jì)
- 高頻電路設(shè)計(jì)
LMDS是一種較新的寬帶無線接入技術(shù),它以初期投資少、傳輸速率高、業(yè)務(wù)類型豐富,以及非常適合在城市中高密度用戶地區(qū)(如商業(yè)大樓)提供寬帶通信服務(wù)等特點(diǎn)而備受業(yè)界矚目。LMDS工作頻段為24GHz~29GHz, 可擴(kuò)展到10GHz~66GHz。這意味著需要毫米波收發(fā)系統(tǒng)。LMDS射頻系統(tǒng)毫米波收發(fā)單元的接收/發(fā)射次諧波混頻器需要本地微波頻率振蕩源提供穩(wěn)定的本地參考振蕩信號。
微波頻率源是所有微波系統(tǒng)(如雷達(dá)、通訊、導(dǎo)航等)的基本微波能源。主要包括固定頻率振蕩器(點(diǎn)頻振蕩源)和微波頻率合成器兩類。固定頻率振蕩器通常采用鎖相環(huán)技術(shù)來獲得高穩(wěn)定度、低相位噪聲的輸出信號,在通訊系統(tǒng)和雷達(dá)系統(tǒng)中作為本機(jī)振蕩器得到最廣泛的應(yīng)用,其中包括VCO鎖相點(diǎn)頻源、DRO鎖相點(diǎn)頻源等。石英晶體震蕩器是一種高穩(wěn)定的頻率源,但是它們只能工作在幾百兆赫范圍內(nèi),不能達(dá)到設(shè)計(jì)要求。在微波頻率,設(shè)計(jì)穩(wěn)定的頻率源通常用石英晶體振蕩器輸出信號經(jīng)鎖相環(huán)技術(shù)N次倍頻來實(shí)現(xiàn)。
本文介紹的頻率振蕩器為LMDS射頻系統(tǒng)中的本地振蕩源設(shè)計(jì),要求輸出信號固定頻率點(diǎn)為11.776GHz,信號功率為1mW,相位噪聲指標(biāo)(傅氏頻率為1kHz時)為-75dBc/Hz。LMDS對本振源的精度要求較高,同時由于LMDS系統(tǒng)采取四相相移鍵控(QPSK)調(diào)制方式,本振源的穩(wěn)定度需要達(dá)到一定量級來滿足低誤碼率的要求。利用分頻式鎖相倍頻技術(shù)可以實(shí)現(xiàn)低成本、高性能的微波信號發(fā)生器的設(shè)計(jì)要求。
分頻式鎖相環(huán)倍頻原理
典型的分頻式鎖相環(huán)路包括檢相器(PHD)、電壓控制振蕩器(VCO)、環(huán)路濾波器(LPF)和可編程數(shù)字分頻器(1/N)。圖1是最簡易的鎖相式頻率合成器的相位模型圖。一個高精度穩(wěn)定參考信號fi輸入至檢相器,與1/N分頻后的電壓控振蕩信號f0/N檢相,產(chǎn)生一個電平隨兩個信號之間的相位的偏差而變化的誤差電壓。經(jīng)過濾波后誤差信號作為電壓控制振蕩器的控制電壓,使得壓控振蕩器輸出f0=Nfi。鎖相環(huán)具有高穩(wěn)定度,一旦完成相位鎖定,環(huán)路將會無限時保持鎖定狀態(tài)。如果電壓控制振蕩器頻率發(fā)生偏移,就會導(dǎo)致控制電壓發(fā)生變化,而這種變化又使得整個環(huán)路再重新回到鎖定狀態(tài)。同時由于分頻式設(shè)計(jì),f0的抖動Δf經(jīng)N次分頻后到達(dá)檢相器,也降低了對VCO的穩(wěn)定性要求。通過改變分頻器分頻比,可以鎖相倍頻在不同的頻率上。分頻鎖相倍頻具有諸多優(yōu)點(diǎn),在高頻率微波信號發(fā)生器設(shè)計(jì)中廣泛應(yīng)用。
假定檢相特性為正弦形,可求出鎖相環(huán)路的開環(huán)傳遞函數(shù)、閉環(huán)傳遞函數(shù),以及誤差傳輸函數(shù)等。
誤差傳遞函數(shù)又可寫為:He(s)=1-H(s)
系統(tǒng)組成與設(shè)計(jì)
a.系統(tǒng)總體設(shè)計(jì)方案
不同于文獻(xiàn)中采取先諧波混頻獲得較高頻率的中頻信號后再鎖相獲得振蕩信號的設(shè)計(jì)方法,筆者采取對晶體振蕩器輸出參考信號直接一次鎖相倍頻獲得高頻信號,再對輸出高頻信號進(jìn)行后續(xù)處理以達(dá)到設(shè)計(jì)要求的方案。該方案電路結(jié)構(gòu)簡單、容易實(shí)現(xiàn),獲得的振蕩信號穩(wěn)定度高、相位噪聲低,但是直接高倍頻鎖相增加了射頻電路的復(fù)雜性,電路匹配和電磁兼容性問題的解決也相應(yīng)地更加復(fù)雜。
在該頻率振蕩器系統(tǒng)中,利用高穩(wěn)定晶體振蕩源輸出信號經(jīng)過中心頻率為46MHz帶通濾波器,提供一個高精確的穩(wěn)定參考信號至檢相器,鎖相環(huán)路分頻計(jì)數(shù)器設(shè)置為128,達(dá)到鎖相后VCO輸出5.888GHz固定點(diǎn)頻信號,再經(jīng)過高頻電路倍頻獲得11.776GHz的二次諧波。由于采用的倍頻器基波抑制性能較差,需要通過阻帶濾波和功率放大獲得足夠功率的高穩(wěn)定低相位噪聲的高純度11.776GHz振蕩信號。圖2為整個頻率振蕩器系統(tǒng)的設(shè)計(jì)框架。
整個系統(tǒng)按照信號頻率大致可以分為低頻(鎖相環(huán)電路)和高頻(倍頻放大電路)兩個模塊,鎖相環(huán)電路的設(shè)計(jì)和測試是系統(tǒng)仿真與設(shè)計(jì)的重點(diǎn)。雖然鎖相環(huán)大部分元件頻率較低,但是由于環(huán)路完成高倍數(shù)倍頻,分頻器輸入信號和壓控振蕩器輸出信號為5.888GHz的高頻信號,因此整個系統(tǒng)設(shè)計(jì)時要解決好高頻信號電路的匹配和電磁兼容性問題,包括確保良好的屏蔽和接地措施減少電路間的相互干擾;在避免耦合盡量減小導(dǎo)體長度的同時,使導(dǎo)體之間的距離盡可能地遠(yuǎn);在電源接入處需設(shè)置精致的旁路防止射頻電流在電路間傳播等。
b.鎖相電路的仿真和設(shè)計(jì)
環(huán)路濾波器設(shè)計(jì)——環(huán)路濾波器形式和參數(shù)的選取是整個鎖相環(huán)電路設(shè)計(jì)與調(diào)試的關(guān)鍵。在壓控振蕩器和檢相器設(shè)計(jì)確定的情況下,環(huán)路濾波器的傳輸函數(shù)直接決定了整個環(huán)路的傳輸函數(shù),從而在很大程度上決定環(huán)路的噪聲性能、捕獲和跟蹤性能等。在鎖相環(huán)路設(shè)計(jì)中廣泛采用由有源比例積分濾波器組成的高增益二階環(huán)路,因?yàn)檫@種環(huán)路具有無條件穩(wěn)定性,而且有較大相位裕度。但是為了更好地抑制控制線中干擾、提高環(huán)路噪聲抑制性能,在高增益二階環(huán)的基礎(chǔ)上附加一級RC低通濾波器。其電路形式如圖3所示。
環(huán)路濾波器傳遞函數(shù)為:
第一項(xiàng)為附加的RC低通濾波器傳輸函數(shù),第二項(xiàng)為高增益二階環(huán)的環(huán)路濾波器的傳輸函數(shù)。
根據(jù)高增益二階環(huán)傳遞特性,環(huán)路自然諧振頻率fn=
鎖相環(huán)路輸入?yún)⒖碱l率fi=46MHz。(8)式中環(huán)路阻尼系數(shù)ζ的取值直接影響環(huán)路瞬態(tài)響應(yīng)。ζ值太大,環(huán)路的低通性能差,對環(huán)路相位噪聲抑制不夠;ζ太小,瞬態(tài)特性過長,捕捉時間過長;選擇ζ=0.707。根據(jù)環(huán)路特性折衷考慮環(huán)路捕捉時間和相位噪聲抑制效果,取環(huán)路fn=1MHz,fn<<fi以保證對輸入頻率的足夠抑制。筆者使用的鎖相環(huán)路電壓控制振蕩器的頻推特性為K0=150MHz/V,檢相器增益系數(shù)Kd=2V/2π。分頻倍數(shù)N=128。求得環(huán)路濾波器時間常數(shù)τ2=2.34μs,τ3=1.41μs;取電容C2=2200pF, 則R3≈580Ω,R2≈1kΩ。
為提高鎖相環(huán)路低通性能,在環(huán)路濾波器附加RC濾波器,在保證對控制線中干擾的足夠抑制的前提下,通常要求其3dB頻率點(diǎn)f3≥5fn以保證環(huán)路的穩(wěn)定性。在實(shí)驗(yàn)中,取f3=10fn=10MHz,則取R1=R2=1kΩ,C1≈1200pF。
鎖相環(huán)路穩(wěn)定性仿真和分析——由于在二階高增益環(huán)中附加了RC濾波器,增強(qiáng)了環(huán)路對相位噪聲的抑制能力,但也影響了環(huán)路穩(wěn)定性,有必要對環(huán)路穩(wěn)定性進(jìn)行判別。ADS中用波特圖法仿真分析環(huán)路開環(huán)傳輸函數(shù)的幅頻特性和相頻特性,見圖4。
環(huán)路仿真結(jié)果是環(huán)路的最大總相移都不超過180°,符合無條件穩(wěn)定條件,即:
增益臨界頻率附近有57.119°的正相位裕度,驗(yàn)證了鎖相環(huán)路是足夠穩(wěn)定的。
鎖相環(huán)路相位噪聲仿真和分析——根據(jù)鎖相環(huán)路閉環(huán)傳輸函數(shù)(5)式,鎖相環(huán)路輸出信號的相位噪聲譜由下式?jīng)Q定:
(10)式中 為輸入調(diào)相信號的相位噪聲譜,為分頻器引入的附加相位噪聲, 為檢相器引入的附加相位噪聲譜, 為壓控振蕩器附加的相位噪聲譜。由于鎖相環(huán)閉環(huán)傳輸函數(shù)H(jw)具有低通性質(zhì),即:
可見分頻式鎖相環(huán)路對于輸入信號、分頻器、檢相器的附加相位噪聲呈低通特性,對于壓控振蕩器的相位噪聲呈高通特性。環(huán)路相位噪聲仿真結(jié)果與該結(jié)論相符,見圖5。與普通倍頻器件相似,“低通型”的噪聲通過分頻鎖相環(huán)會增加N2倍,輸入?yún)⒖夹盘杹碜苑€(wěn)定信源,其信噪比較高,而分頻器輸出端很小的近旁頻信號在經(jīng)過后,都會在壓控振蕩器輸出一個較大的近旁頻成分。所以在設(shè)計(jì)中注意對壓控振蕩器輸出和分頻器輸入進(jìn)行嚴(yán)格隔離,防止有干擾串入分頻器。
c.高頻電路設(shè)計(jì)
參考信號經(jīng)過鎖相環(huán)路獲得低相位噪聲、高穩(wěn)定的5.888GHz信號(功率大于+10dBm),需要設(shè)計(jì)高頻電路進(jìn)行倍頻、濾波、功率放大來達(dá)到設(shè)計(jì)頻率的要求。由于采用的倍頻器基波抑制不理想,倍頻后仍殘留有較大的5.888GHz基波信號,設(shè)計(jì) 短截線基型微波帶阻濾波器對其進(jìn)行濾除。帶阻濾波器阻帶中心頻率5.888GHz,阻帶衰減50dB以上,通帶衰減小于3dB,兩端均為50Ω微帶線。帶阻濾波器的諧振器為 并聯(lián)開路短截線,其間為 的連接線。濾波后采用低耗能的射頻放大器對信號進(jìn)行功率放大以彌補(bǔ)濾波器的通帶衰減。功率放大器電路設(shè)計(jì)主要是隔直電路的設(shè)計(jì),選用一級耦合微帶作為隔直電路,對11.776GHz信號增益可以達(dá)到10dB左右。圖6給出了用網(wǎng)絡(luò)分析儀測得的帶阻濾波器和功率放大器的s12特性。
系統(tǒng)實(shí)驗(yàn)結(jié)果
在整個鎖相頻率綜合器系統(tǒng),需要測量的電路單元主要有:分頻式鎖相環(huán)環(huán)路特性、高頻帶阻濾波器特性、高頻信號功率放大單元和整個頻率綜合系統(tǒng)的輸出頻譜特性。用Marconi 10kHz~1GHz信號發(fā)生器提供高精度46MHz參考信號,用HP8592A頻譜分析儀測量輸出信號頻率特性。頻譜結(jié)果如圖7所示,系統(tǒng)輸出信號頻率點(diǎn)在11.776GHz,系統(tǒng)輸出信號功率為3.64dBm。用同樣頻譜分析儀測量系統(tǒng)輸出信號的單邊帶相位噪聲。取偏離載頻為1kHz的測試波形,測得其單邊帶相位噪聲為-72.8dBc/Hz@1kHz。
利用分頻鎖相環(huán)技術(shù),完成了小體積、高穩(wěn)定、低相噪的固定頻率微波信號發(fā)生器的設(shè)計(jì),輸出信號噪聲指數(shù)達(dá)-72.8dBc/Hz@1kHz。該鎖相頻率振蕩器已經(jīng)用于LMDS系統(tǒng)設(shè)計(jì)和測試中,為毫米波收發(fā)系統(tǒng)次諧波混頻器提供穩(wěn)定、低相噪的11.776GHz的本地振蕩源信號。