正如預(yù)計(jì)的那樣,PSD在基頻處生成與輸入信號(hào)相對(duì)相位的余弦成比例的響應(yīng),但它同時(shí)也會(huì)生成針對(duì)信號(hào)所有奇次諧波的響應(yīng)。若將輸出濾波器視為相敏檢波器的一部分,則信號(hào)傳輸路徑看上去就會(huì)像是一系列以基準(zhǔn)信號(hào)奇次諧波為中心的帶通濾波器。帶通濾波器的帶寬由低通輸出濾波器的帶寬確定。PSD輸出響應(yīng)是這些帶通濾波器之和,如圖3所示。出現(xiàn)在直流端的響應(yīng)部分落在輸出濾波器的通帶內(nèi)。出現(xiàn)在基準(zhǔn)頻率偶次諧波的響應(yīng)部分將由輸出濾波器抑制。
實(shí)例講解:低成本、低功耗的同步解調(diào)器設(shè)計(jì)
發(fā)布時(shí)間:2015-08-27 責(zé)任編輯:sherry
【導(dǎo)讀】同步解調(diào)可以解決很多傳感器信號(hào)調(diào)理所共有的特性挑戰(zhàn)。低于1 MHz激勵(lì)頻率且動(dòng)態(tài)范圍要求為80 dB至100 dB的系統(tǒng)可以采用低成本、低功耗模擬電路;該方法所需的數(shù)字后處理極少。了解相敏檢波器的工作原理以及傳感器輸出端的噪聲特性是確定系統(tǒng)濾波器要求的關(guān)鍵。
傳感器激勵(lì)
傳感器隨處可見,它們用來(lái)測(cè)量溫度、光照、聲音和其他各種環(huán)境參數(shù)。一些傳感器的輸出電壓或電流取決于某些物理參數(shù)。例如,熱電偶產(chǎn)生與參考結(jié)點(diǎn)和測(cè)量點(diǎn)之間溫度差成比例的電壓。大部分傳感器的傳遞函數(shù)相對(duì)于物理參數(shù)遵循已知的關(guān)系。傳遞函數(shù)通常是一個(gè)阻抗,電流是傳感器輸入,而傳感器兩端的電壓表示目標(biāo)參數(shù)。阻性傳感器(比如稱重傳感器、RTD和電位計(jì))分別用來(lái)測(cè)量應(yīng)力、溫度和角度。就一階而言,阻性傳感器與頻率無(wú)關(guān),并且沒有相位響應(yīng)。
很多傳感器因?yàn)樗鼈兊膫鬟f函數(shù)隨頻率和相位改變,所以要求使用交流激勵(lì)信號(hào)。這樣的例子有感性近距離傳感器和容性濕度傳感器。生物阻抗測(cè)量可以獲取有關(guān)呼吸率、脈搏率、水合作用和其他各種生理參數(shù)。這些情況下,幅度、相位(或兩者)都可用來(lái)確定檢測(cè)參數(shù)的數(shù)值。
在某些應(yīng)用中,傳感器可以把待測(cè)樣本轉(zhuǎn)換成感應(yīng)器。例如,色度計(jì)使用LED將光線照射穿過(guò)待測(cè)液體樣本。樣本的光吸收調(diào)制光電二極管檢測(cè)的光量,以便揭示待測(cè)液體的特性。血氧含量可以通過(guò)測(cè)量血管組織中的紅光和紅外光吸收之差來(lái)確定。超聲傳感器根據(jù)超聲在氣體中行進(jìn)的多普勒頻移來(lái)測(cè)量氣流速率。所有這些系統(tǒng)都可以使同步解調(diào)來(lái)實(shí)現(xiàn)。
圖1顯示的是測(cè)量傳感器輸出信號(hào)的同步解調(diào)系統(tǒng)。激勵(lì)信號(hào)fx用作載波,傳感器以幅度、相位(或兩者同時(shí))作為待測(cè)參數(shù)的函數(shù)進(jìn)行調(diào)制。信號(hào)可能經(jīng)過(guò)放大和濾波,然后再由相敏檢波器(PSD)向下調(diào)制,回到直流狀態(tài)。輸出濾波器(OF)將信號(hào)帶寬限制在待測(cè)參數(shù)的頻率范圍內(nèi)。
圖1. 同步解調(diào)系統(tǒng)
傳感器輸出端的噪聲可能受內(nèi)部源或外部耦合的影響。低頻(1/f)噪聲經(jīng)常會(huì)限制傳感器或測(cè)量電子設(shè)備的性能。很多傳感器還容易受到低頻環(huán)境噪聲的干擾。光學(xué)測(cè)量容易受到背景光照的影響;電磁傳感器容易受到電源輻射的影響。自由選擇激勵(lì)頻率以避開噪聲源是同步解調(diào)的重要優(yōu)勢(shì)。
選擇一個(gè)可以降低這些噪聲源影響的激勵(lì)頻率是優(yōu)化系統(tǒng)性能的重要途徑。所選激勵(lì)頻率應(yīng)當(dāng)具有較低的噪底,并離開噪聲源足夠距離,以便適當(dāng)進(jìn)行濾波便可將噪聲降低至可以接受的水平。傳感器激勵(lì)通常是功耗預(yù)算中最大的一塊。如果傳感器的靈敏度與頻率的關(guān)系已知,則在靈敏度較高的頻率處激勵(lì)傳感器即可降低功耗。
相敏檢波器
若要理解抗混疊濾波器(AAF)和OF的要求,則需理解PSD。考慮通過(guò)激勵(lì)信號(hào)將輸入信號(hào)同步擴(kuò)大+1和–1倍的PSD。這等效于輸入信號(hào)乘以相同頻率的方波。圖2a顯示的是輸入信號(hào)、基準(zhǔn)電壓源和PSD輸出的時(shí)域波形;圖中,輸入信號(hào)為方波,任意相位與基準(zhǔn)電壓源相關(guān)。
當(dāng)輸入和基準(zhǔn)電壓完全無(wú)相移時(shí),相對(duì)相位為0°,開關(guān)輸出為直流,且PSD輸出電壓為+1。隨著相對(duì)相位增加,開關(guān)輸出成為基準(zhǔn)頻率兩倍的方波,且占空比和均值線性下降。相對(duì)相位為90°時(shí),占空比為50%,平均值為0。在180°相對(duì)相位處,PSD輸出電壓為–1。圖2b顯示了相對(duì)相位在0°至360°范圍內(nèi)掃描時(shí)的PSD平均輸出值,輸入信號(hào)為方波和正弦波。
圖2. (a) PSD時(shí)域波形 (b) PSD輸出平均值與相對(duì)相位成函數(shù)關(guān)系
正弦波情形沒有方波情形那么直觀,但可以通過(guò)逐項(xiàng)相乘并分解為相加項(xiàng)和相減項(xiàng)而計(jì)算,如下所示:
[page]正如預(yù)計(jì)的那樣,PSD在基頻處生成與輸入信號(hào)相對(duì)相位的余弦成比例的響應(yīng),但它同時(shí)也會(huì)生成針對(duì)信號(hào)所有奇次諧波的響應(yīng)。若將輸出濾波器視為相敏檢波器的一部分,則信號(hào)傳輸路徑看上去就會(huì)像是一系列以基準(zhǔn)信號(hào)奇次諧波為中心的帶通濾波器。帶通濾波器的帶寬由低通輸出濾波器的帶寬確定。PSD輸出響應(yīng)是這些帶通濾波器之和,如圖3所示。出現(xiàn)在直流端的響應(yīng)部分落在輸出濾波器的通帶內(nèi)。出現(xiàn)在基準(zhǔn)頻率偶次諧波的響應(yīng)部分將由輸出濾波器抑制。
圖3. 有助于PSD輸出的信號(hào)輸入頻譜
乍看之下,諧波的無(wú)限求和混疊進(jìn)入輸出濾波器通帶,似乎使這種方法失效。然而,由于每一個(gè)諧波項(xiàng)都成倍縮小,并且各諧波噪聲以平方和的平方根方式相加,噪聲混疊的影響得以減輕。假設(shè)輸入信號(hào)的噪聲頻譜密度不變,那么就可以計(jì)算諧波混疊的噪聲影響。
使Vn成為以基頻為中心的傳輸窗口的積分噪聲??俁MS噪聲VT為:
因此,所有諧波窗口產(chǎn)生的RMS噪聲使總噪聲僅增加11%(或1dB)。輸出依然容易受到帶通濾波器的通帶波動(dòng)影響,并且PSD之前的傳感器或電子器件諧波失真將導(dǎo)致輸出信號(hào)產(chǎn)生誤差。如果這些諧波失真項(xiàng)過(guò)大而無(wú)法接受,可以使用抗混疊濾波器使其下降。下一個(gè)設(shè)計(jì)示例中將考慮抗混疊和輸出濾波器要求。
[page]
LVDT設(shè)計(jì)示例
圖4顯示的是一個(gè)同步解調(diào)電路,該電路可從線性可變位移變壓器(LVDT,一種特殊的繞線變壓器,具有活動(dòng)內(nèi)核,貼在待測(cè)位置)提取位置信息。激勵(lì)信號(hào)施加于初級(jí)端。次級(jí)端電壓隨內(nèi)核位置成比例變化。
LVDT的類型有很多,此外提取位置信息的方法也各不相同。該電路采用4線模式LVDT。將兩個(gè)LVDT的次級(jí)輸出相連使其電壓相反,從而執(zhí)行減法。當(dāng)LVDT內(nèi)核位于零點(diǎn)位置時(shí),次級(jí)端上的電壓相等,繞組上的電壓差為零。隨著內(nèi)核從零點(diǎn)位置開始移動(dòng),次級(jí)繞組上的電壓差也隨之增加。LVDT輸出電壓符號(hào)根據(jù)方向而改變。本例選擇的LVDT測(cè)量±2.5 mm滿量程內(nèi)核位移。電壓傳遞函數(shù)為0.25,意味著當(dāng)內(nèi)核偏離中心2.5 mm時(shí),施加于初級(jí)端的每伏特電壓的差分輸出等于250 mV。
圖4. 簡(jiǎn)化LVDT位置檢測(cè)電路
集成式同步解調(diào)器
ADA2200集成式同步解調(diào)器采用獨(dú)特的電荷共享技術(shù)來(lái)執(zhí)行模擬域內(nèi)的分立式時(shí)間信號(hào)處理。該器件的信號(hào)路徑由輸入緩沖器、FIR抽取濾波器(進(jìn)行抗混疊濾波)、可編程IIR濾波器、相敏檢波器以及差分輸出緩沖器組成。其時(shí)鐘生成功能可將激勵(lì)信號(hào)與系統(tǒng)時(shí)鐘同步。通過(guò)SPI兼容接口可配置可編程特性。
圖5. ADA2200同步解調(diào)器
24位Σ-Δ型ADC AD7192生成的4.92 MHz時(shí)鐘用作主機(jī)時(shí)鐘。ADA2200生成濾波器和PSD時(shí)鐘所需的一切內(nèi)部信號(hào),此外還在RCLK引腳上生成激勵(lì)信號(hào)。該器件將主機(jī)時(shí)鐘進(jìn)行1024分頻,以便生成4.8 kHz信號(hào),控制CMOS開關(guān)。CMOS開關(guān)將低噪聲3.3 V源轉(zhuǎn)換為L(zhǎng)VDT的方波激勵(lì)信號(hào)。用于激勵(lì)源的3.3 V電源還用作ADC基準(zhǔn)電壓源,因此電壓源中的一切漂移都不會(huì)降低測(cè)量精度。在滿量程位移處,LVDT輸出1.6 V峰峰值輸出電壓。
抗混疊濾波
LVDT輸出和ADA2200輸入之間的RC網(wǎng)絡(luò)為L(zhǎng)VDT輸出信號(hào)提供低通濾波,同時(shí)產(chǎn)生使解調(diào)器輸出信號(hào)最大所需的相對(duì)相移。如前所述,圖2b顯示了最大PSD輸出發(fā)生在相對(duì)相移為0°或180°處。ADA2200具有90°相位控制,因而還可以使用±90°相對(duì)相位失調(diào)。
解調(diào)頻率奇數(shù)倍的信號(hào)能量將出現(xiàn)在輸出濾波器的通帶內(nèi)。FIR抽取濾波器實(shí)現(xiàn)抗混疊濾波,能為這些頻率提供至少50 dB衰減。
如有需要,IIR濾波器可提供額外的濾波或增益。由于IIR濾波器在相敏檢波器前面,其相位響應(yīng)將會(huì)影響PSD信號(hào)輸出帶寬。設(shè)計(jì)濾波器響應(yīng)時(shí),必須考慮這一點(diǎn)。
[page]
輸出濾波器
應(yīng)選擇輸出濾波器的通帶,使其匹配待測(cè)參數(shù)的帶寬,但限制系統(tǒng)的寬帶噪聲。輸出低通濾波器必須還要能夠抑制PSD偶數(shù)倍產(chǎn)生的輸出雜散。
該電路使用Σ-Δ型ADC AD7192內(nèi)置的LPF。它可以通過(guò)編程實(shí)現(xiàn)sinc3或sinc4響應(yīng),并且傳遞函數(shù)在輸出數(shù)據(jù)速率的倍數(shù)處為零。
將ADC的輸出數(shù)據(jù)速率設(shè)為解調(diào)頻率可以抑制PSD輸出雜散。ADC的可編程輸出數(shù)據(jù)速率用作可選帶寬輸出濾波器。可用的輸出數(shù)據(jù)速率(fDATA)為4.8 kHz/n,其中1 ≤ n ≤ 1023。因此,ADC對(duì)每個(gè)輸出數(shù)據(jù)數(shù)值的n個(gè)解調(diào)時(shí)鐘周期內(nèi)求解調(diào)器輸出的平均值。由于主機(jī)時(shí)鐘和ADC時(shí)鐘同步,ADC輸出濾波器傳遞函數(shù)的零點(diǎn)將直接落在調(diào)制頻率的每一個(gè)諧波上,并且抑制任意n值的所有輸出雜散。
圖6顯示了歸一化為ADC輸出數(shù)據(jù)速率的sinc3傳輸函數(shù)。
可編程輸出數(shù)據(jù)速率具有噪聲和帶寬/建立時(shí)間之間的直觀權(quán)衡取舍關(guān)系。輸出濾波器噪聲帶寬為0.3 × fDATA、3 dB頻率為0.272 × fDATA,建立時(shí)間為3/fDATA。
在最高4.8 kHz輸出數(shù)據(jù)速率下,ADC數(shù)字濾波器具有1.3 kHz左右的3 dB帶寬。在不超過(guò)此頻率的范圍內(nèi),解調(diào)器和ADC之間的RC濾波器相對(duì)平坦,最大程度降低了ADC的帶寬要求。在最大數(shù)據(jù)速率較低的系統(tǒng)中,RC濾波器轉(zhuǎn)折頻率可以按比例降低。
噪聲性能
該電路的輸出噪聲是ADC輸出數(shù)據(jù)速率的函數(shù)。表1顯示數(shù)字化數(shù)據(jù)相對(duì)于ADC采樣速率的有效位數(shù),假設(shè)滿量程輸出電壓為2.5 V。噪聲性能與LVDT內(nèi)核位置無(wú)關(guān)。
表1. 噪聲性能與帶寬的關(guān)系
如果ADA2200輸出噪聲與頻率無(wú)關(guān),則預(yù)計(jì)有效位數(shù)將在輸出數(shù)據(jù)速率每4×下降時(shí)增加一位。ENOB在較低輸出數(shù)據(jù)速率下不會(huì)上升太多,這是由于ADA2200輸出驅(qū)動(dòng)器的1/f噪聲所導(dǎo)致的;該噪聲在較低的輸出數(shù)據(jù)速率下成為噪底的主要成分。
線性度
首先在±2.0 mm內(nèi)核位移處執(zhí)行一次兩點(diǎn)校準(zhǔn)即可測(cè)量線性度結(jié)果。由這些測(cè)量結(jié)果可確定斜率和失調(diào),從而實(shí)現(xiàn)最佳直線擬合。然后,在±2.5 mm滿量程范圍內(nèi)測(cè)量?jī)?nèi)核位移。從直線數(shù)據(jù)中減去測(cè)量數(shù)據(jù)即可確定線性度誤差。
圖7. 位置線性度誤差與LVDT內(nèi)核位移的關(guān)系
用于電路評(píng)估的E系列LVDT線性度額定值為±0.5%(±2.5 mm位移范圍)電路性能超過(guò)了LVDT的規(guī)格。
功耗
電路總功耗為10.2 mW,包括驅(qū)動(dòng)LVDT的6.6 mW以及電路其余部分的3.6 mW。電路SNR可以通過(guò)增加LVDT激勵(lì)信號(hào)而得到改善,但代價(jià)是功耗更高?;蛘撸梢酝ㄟ^(guò)降低LVDT激勵(lì)信號(hào)從而降低功耗,同時(shí)使用低功耗雙通道運(yùn)算放大器來(lái)放大LVDT輸出信號(hào),以便保留電路的SNR性能。
特別推薦
- 兆易創(chuàng)新GD32F30x STL軟件測(cè)試庫(kù)獲得德國(guó)萊茵TüV IEC 61508功能安全認(rèn)證
- 芯科科技第三代無(wú)線開發(fā)平臺(tái)引領(lǐng)物聯(lián)網(wǎng)發(fā)展
- MSO 4B 示波器為工程師帶來(lái)更多臺(tái)式功率分析工具
- 艾為電子推出新一代高線性度GNSS低噪聲放大器——AW15745DNR
- 瑞薩發(fā)布四通道主站IC和傳感器信號(hào)調(diào)節(jié)器, 以推動(dòng)不斷增長(zhǎng)的IO-Link市場(chǎng)
- e絡(luò)盟現(xiàn)貨供應(yīng) Abracon 新推出的 AOTA 系列微型鑄型電感器
- 加賀富儀艾電子推出支持Wi-Fi 6和藍(lán)牙的無(wú)線局域網(wǎng)/藍(lán)牙組合模塊
技術(shù)文章更多>>
- 一文掌握UV LED在空凈消殺領(lǐng)域的主要應(yīng)用
- 聚焦汽車智能化與電動(dòng)化︱AUTO TECH 2025 華南展11月,已全面啟動(dòng),邀您共精彩!
- 【“源”察秋毫系列】 Keithley在碳納米管森林涂層纖維復(fù)合材料的應(yīng)用
- 數(shù)字驅(qū)動(dòng)工業(yè),智能賦能制造 AMTS & AHTE SOUTH CHINA 2024同期會(huì)議全公開!
- 團(tuán)體觀展招募!104CEF開啟組團(tuán)觀眾通道,解鎖更多禮遇
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索