下一代高能電池:鋰金屬電池的復(fù)興
發(fā)布時(shí)間:2017-06-19 責(zé)任編輯:susan
【導(dǎo)讀】鋰金屬電池(LMBs)是最有希望的下一代高能量密度存儲(chǔ)設(shè)備之一,能夠滿足新興行業(yè)的嚴(yán)格要求。然而,直接應(yīng)用金屬鋰可能帶來安全問題、較差的倍率和循環(huán)性能,甚至負(fù)極材料在電池內(nèi)部的粉碎。
其主要原因包括大極化和強(qiáng)電場(chǎng)引起的異質(zhì)沉積導(dǎo)致的枝晶生長、金屬鋰極度活潑、循環(huán)時(shí)鋰體積無限變化等。這些缺點(diǎn)嚴(yán)重阻礙了LMBs的商業(yè)化。
電池領(lǐng)域的各研究小組深入探討了鋰金屬負(fù)極的失效機(jī)理,提出了解決上述問題的有效方法。鋰離子的沉積行為、枝晶成核和生長機(jī)理、負(fù)極-電解質(zhì)界面的影響等得到了深入研究。2014年~2016年,500多篇涉及上述難題的論文得以出版,2016年以來平均每月有15篇相關(guān)文章出爐。這些研究對(duì)下一代高能量密度LMBs鋰負(fù)極的復(fù)興起了很大作用。
近日,華中科技大學(xué)的翟天佑教授和李會(huì)巧教授(共同通訊)等人在Advanced Materials上發(fā)表了題為“Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries”的綜述文章。文章介紹了鋰離子沉積/溶解行為的最新進(jìn)展,以及鋰金屬負(fù)極的失效機(jī)理。
綜述總覽圖
1.概述
高端通信終端、電動(dòng)汽車(EV)、航空航天、大型儲(chǔ)能站等新興行業(yè)已經(jīng)進(jìn)入了快速發(fā)展的階段,因此高能量密度存儲(chǔ)已成為當(dāng)務(wù)之急。鑒于壽命和安全性,現(xiàn)有的“搖椅式”鋰離子電池(LIBs)或鈉離子電池(NIBs)是合適的選擇。但是即使插入式LIB系統(tǒng)的能量密度通過調(diào)節(jié)電池的每個(gè)部件能接近其理論值,卻仍然遠(yuǎn)低于預(yù)期能量水平。主要原因在于循環(huán)過程中的單離子嵌入反應(yīng)嚴(yán)格限制了正極的能力。無論是層狀LiCoO2、富Li或富Ni的LiMO2(M = Ni、Co、Mn等)、摻雜尖晶石LiMxMn2-xO4(M = Ni、Cu、Cr、V等)還是橄欖石LiFePO4,它們都不能實(shí)現(xiàn)大于250mA h g-1的容量。這種情況促進(jìn)了基于多離子反應(yīng)的正極的發(fā)展,例如理論容量高達(dá)1672mA h g-1的S和O2。
值得一提的是,這些無鋰正極只有在與含鋰負(fù)極配對(duì)時(shí)才能投入實(shí)際應(yīng)用。金屬鋰本身可以作為S和O2正極的理想負(fù)極,因?yàn)樗哂凶罡叩睦碚撊萘浚?860 mA h g-1),最低的密度(0.59 g cm-3)和最負(fù)的電化學(xué)電位(-3.04 V )。與現(xiàn)有的LIBs相比,金屬鋰作為負(fù)極進(jìn)一步提高了鋰金屬電池(LMB)的能量密度,如圖1所示,Li-O2和Li-S電池系統(tǒng)分別具有高達(dá)3505 W h kg-1和2567 W h kg-1的理論能量密度。這些鋰金屬電池系統(tǒng)充分發(fā)揮了金屬鋰的優(yōu)勢(shì),具有滿足新興行業(yè)嚴(yán)格要求的巨大潛力。
圖1.離子電池和鋰金屬電池示意圖以及失效機(jī)理
a)鋰離子電池示意圖;
b)鋰金屬電池示意圖;
c)典型電極材料在電壓和容量方面的比較,LMBs的能量密度遠(yuǎn)大于LIBs;
d)鋰枝晶引起的安全問題;
e)連續(xù)副反應(yīng)引起的較低的循環(huán)性能;
f)負(fù)極內(nèi)無限的體積變化引起的負(fù)極粉碎。
2.鋰金屬負(fù)極的失效機(jī)理
具體來說,鋰金屬負(fù)極電池失效可分為三類:i)無限制枝晶生長導(dǎo)致的災(zāi)難性短路;ii)金屬鋰的連續(xù)副反應(yīng)和相當(dāng)大的死鋰的形成導(dǎo)致循環(huán)性能變差;iii)無限的體積變化誘發(fā)的完全負(fù)極粉碎和電斷開。
2.1 枝晶形成和短路
LMBs中鋰離子的行為與LIBs中鋰離子的插入/脫嵌行為完全不同。通常,在充電期間,鋰離子從外部電路獲得電子,然后以金屬-鋰顆粒的形式直接沉積在負(fù)極表面或下方。如果不對(duì)體系進(jìn)行任何修飾,就會(huì)在鋰負(fù)極的頂部形成枝晶狀圖案。為了揭示鋰沉積行為、負(fù)極形態(tài)和界面的演變,各研究小組通過計(jì)算或高級(jí)表征技術(shù)從不同方面提出了相關(guān)模型。
圖2.鋰金屬負(fù)極失效機(jī)理的不同模型
a)時(shí)間依賴鋰沉積經(jīng)典數(shù)學(xué)模型;
b)毛細(xì)管電池在各種沉積電流密度下的電壓響應(yīng);
c)處理SEI層的機(jī)械性能對(duì)鋰沉積行為影響的SEI模型;
d)死鋰形成。
2.2 極度活潑和不佳的循環(huán)性能
長期循環(huán)性能是電池的關(guān)鍵性能之一。目前LMBs的不良循環(huán)性能與金屬鋰的極度活潑性密切相關(guān)。由于高的化學(xué)/電化學(xué)活性,特別是電化學(xué)條件下,金屬鋰易于和大多數(shù)氣體、極性非質(zhì)子電解質(zhì)溶劑、鹽陰離子等自發(fā)反應(yīng)。例如,在體積變化誘導(dǎo)的循環(huán)中,脆性SEI層的重復(fù)斷裂和修復(fù)是常見的,這可能導(dǎo)致持久的不可逆的鋰損耗。除了這些電化學(xué)反應(yīng)之外,自發(fā)的化學(xué)反應(yīng)更不可控。例如,如果在Li-S/O2電池中使用未保護(hù)的鋰箔,則從正極溶解的鋰多硫化物或O2的立即化學(xué)反應(yīng)可能進(jìn)一步惡化循環(huán)性能。此外,Li-S電池中的典型產(chǎn)物L(fēng)i2S/Li2S2是不溶的,會(huì)沉積在頂部。這些電絕緣產(chǎn)品由于獲得或給予電子的能力被剝奪而不能重復(fù)使用,導(dǎo)致負(fù)極和正極消耗。此外,沉積在負(fù)極表面的不期望產(chǎn)物的厚度將在持續(xù)循環(huán)過程中增加,從而導(dǎo)致大的界面阻抗,這將極大地限制快速離子傳輸。因此,在全電池組裝之前預(yù)先制作保護(hù)層或鈍化層非常重要。
電池內(nèi)的死鋰形成會(huì)使電池癱瘓。微小的鋰顆?;蚣?xì)絲從基體脫離,然后被電絕緣的SEI層緊密包裹,從而形成死鋰。死鋰一旦形成,不能逆轉(zhuǎn)回活性鋰,并參與沉積/溶解過程,導(dǎo)致鋰源不斷損失,容量衰減逐漸增強(qiáng)。
2.3體積改變和電斷開
電斷開通常發(fā)生在枝晶形成和短路之前,這種失效機(jī)理與負(fù)極大的內(nèi)阻和無限體積膨脹相關(guān)。電解質(zhì)與金屬鋰之間無盡的反應(yīng)會(huì)引起快速向內(nèi)的界面位移。負(fù)極上表面被SEI層覆蓋,下表面的鋰溶解到電解質(zhì)中。在隨后的循環(huán)過程中,負(fù)極結(jié)構(gòu)變得松散和多孔,電解質(zhì)得以滲透,特別是在SEI層破裂之后。因此,活性和非活性鋰之間的界面顯示向內(nèi)運(yùn)動(dòng),并且伴隨著整個(gè)鋰負(fù)極內(nèi)不可恢復(fù)腐蝕的發(fā)生。最近的工作顯示,容量損失、SEI層的厚度和內(nèi)部電阻隨著施加電流密度急劇增加,最終電池以電斷開結(jié)束而不是短路。整個(gè)負(fù)極填充著無電活性死鋰,內(nèi)部的液體電解質(zhì)逐漸耗盡。
3.在液態(tài)有機(jī)電解液(LOE)中復(fù)興鋰金屬負(fù)極的方法
3.1 定制負(fù)極結(jié)構(gòu)
鋰粉末和表面改性的鋰箔可以作為平面鋰箔的替代物,以延遲枝晶的產(chǎn)生。負(fù)極的表面積大大增加以提供相當(dāng)大的沉積位置,從而在一段時(shí)間內(nèi)抑制枝晶生長。然而,鋰箔的表面狀態(tài)和粉末之間的邊界不會(huì)持續(xù)很長時(shí)間,并且整個(gè)箔在長時(shí)間循環(huán)中會(huì)變成隨機(jī)分散的鋰微結(jié)構(gòu)的聚集體。相比之下,集流體(CCs)方法取得了較好的表現(xiàn),傳統(tǒng)銅箔被納米結(jié)構(gòu)化的材料代替。之后為了避免納米結(jié)構(gòu)銅的缺點(diǎn),開發(fā)了碳涂覆的銅箔,這些碳涂層都貢獻(xiàn)了更好的電化學(xué)性能,這與其優(yōu)異的導(dǎo)電性、高比表面積和合適的孔徑/體積比具有密切的關(guān)系。與納米結(jié)構(gòu)或碳涂層銅箔相比,自支撐碳膜本身可直接作為CCs,能夠避免有機(jī)粘合劑或碳脫落產(chǎn)生的導(dǎo)電性所帶來的不利影響。
圖3.鋰電沉積前的三個(gè)典型負(fù)極結(jié)構(gòu)示意圖
a)納米結(jié)構(gòu)銅CCs;
b)涂碳銅箔;
c)自支撐碳框架。
由于不存在鋰源,上述三種類型的CCs(即納米結(jié)構(gòu)銅、碳涂覆銅、自支撐碳框架)不能直接用于LMBs中。在LMBs中需要額外的將鋰電沉積到這些CCs中并進(jìn)行后續(xù)的電池拆卸過程。除了復(fù)雜性之外,這種組裝/拆卸過程可能引入雜質(zhì),引起副反應(yīng),并破壞負(fù)極的完整性。所以研究者又制造了含鋰合金,如Li-Mg、Li-B、Li-Sn等,并且在LMBs中使用時(shí)無枝晶形態(tài)。然而,高品質(zhì)鋰合金難以制備,特別是具有特定納米結(jié)構(gòu)的鋰合金。最近開發(fā)了熔融鋰浸液作為負(fù)載鋰的新技術(shù)。這種方法將傳統(tǒng)的加載過程從內(nèi)部轉(zhuǎn)移到外部,在可控性、加載質(zhì)量和CCs的選擇上更有優(yōu)勢(shì)。
圖4.將鋰源裝入負(fù)極結(jié)構(gòu)的方法
a)在組裝電池中進(jìn)行電沉積,然后拆卸電池取出鋰沉積電極;
b)在合金制備過程中預(yù)先儲(chǔ)存鋰源;
c)熔融鋰注入。
考慮到電池的能量密度、電化學(xué)性能、制造成本和復(fù)雜性,自支撐3D納米結(jié)構(gòu)碳基骨架通過熔融鋰注入的方式封裝鋰顯示出明顯的優(yōu)勢(shì)。但是研究人員仍然面臨一些棘手的問題。崔屹團(tuán)隊(duì)徹底研究了各種宿主的成核過電位現(xiàn)象,揭示出能夠選擇性沉積鋰的宿主依賴性生長現(xiàn)象,見圖5。在這些研究的指導(dǎo)下,相信這些定制的負(fù)極結(jié)構(gòu)將在LMBs中具有更好的應(yīng)用。
圖5.抑制鋰沉積在負(fù)極表面的強(qiáng)大方法
a-b)在0.5mA cm-2下,鋰離子沉積在沒有Au NPs和有Au NPs的空心碳?xì)ど系碾妷悍植紙D,插圖表示沉積后的SEM圖像以及相應(yīng)的原理圖;
c-e)鋰沉積(c)、原位電子束加熱(d)后具有Au NPs的納米膠囊,鋰沉積后沒有Au NPs的碳?xì)ぃ╡)的TEM圖像。
3.2 優(yōu)化電解質(zhì)以獲得更好的鋰負(fù)極性能
由極性有機(jī)溶劑和鋰鹽組成的LOE是電池的一部分。電解質(zhì)調(diào)節(jié)是促進(jìn)長期循環(huán)性能和抑制枝晶生長最有效、最方便的途徑之一。由于其巨大影響和低成本,電解質(zhì)調(diào)節(jié)適合商業(yè)化。電解質(zhì)的組成、添加劑和濃度極大地影響SEI層的性質(zhì)和鋰沉積行為。
3.2.1 形成完整的內(nèi)在SEI層
通常,本征SEI層由各種有機(jī)物(低聚物和聚合物)和無機(jī)物組成,其中有機(jī)部分賦予SEI層柔性以適應(yīng)鋰沉積,而無機(jī)部分能夠?qū)崿F(xiàn)快速的鋰離子傳輸。然而,無機(jī)碳酸鋰(Li2CO3)和鋰乙烯碳酸氫鈉(LEDC)作為兩個(gè)主要的SEI組分,在鋰沉積電位附近是熱力學(xué)不穩(wěn)定的,并且允許循環(huán)中反應(yīng)發(fā)生,而氧化鋰(Li2O)是唯一的熱力學(xué)和動(dòng)力學(xué)穩(wěn)定的組分,最里面的SEI層中的Li2O薄層是非常重要的,以避免在沒有氟化物源的情況下破裂。此外,化學(xué)和物理各向異性在SEI層內(nèi)是常見的,同時(shí)導(dǎo)致異質(zhì)鋰通量和不均勻沉積。沉積和溶解時(shí),由無機(jī)離子香料組成的表面不能適應(yīng)形態(tài)變化,因此可能會(huì)分解,導(dǎo)致高度不均勻的鋰沉積,使得枝晶形成。迄今為止,選擇合適的溶劑、鋰鹽和添加劑可以有效和高效地調(diào)節(jié)SEI層的性質(zhì)。
圖6.用常規(guī)烷基碳酸酯代替DOL有助于保持SEI層的完整性
圖7.具有相同LiTFSI-DOL成分的不同電解質(zhì)中鋰負(fù)極循環(huán)的表面膜行為
3.2.2 調(diào)節(jié)鋰沉積行為
本征SEI層的調(diào)制被認(rèn)為是“保護(hù)方法”,而沉積行為的操作是“基本方法”。迄今為止,兩個(gè)主要的方法具有上述功能,即加入特殊的金屬離子或固體官能粒子和提高電解液的濃度。
如前所述,金屬離子沉積在電化學(xué)過程中是常見的。當(dāng)金屬離子引入LOE中時(shí),外來金屬離子和鋰離子在放電期間顯示出沉積的傾向??梢酝茰y(cè),沉積順序和施加電位在鋰沉積行為和形態(tài)中起重要作用。
圖8.具有可以操作鋰沉積金屬離子添加劑的電解質(zhì)
a)共沉積機(jī)制,Na+可以通過沉積在電化學(xué)活性鋰表面上來阻止枝晶生長;
b)自愈式靜電屏蔽機(jī)制。Cs+或Rb+將積聚在尖端附近以形成靜電屏蔽,排斥Li+沉積在負(fù)極附近區(qū)域。
降低陰離子轉(zhuǎn)移數(shù)的高濃度電解質(zhì)有助于使極化和電場(chǎng)強(qiáng)度最小化,從而延遲負(fù)極表面的枝晶形成。此外,陰離子運(yùn)輸受到嚴(yán)重阻礙,潛在的枝晶生長速度將會(huì)減緩。游離溶劑數(shù)量的減少也抑制了電解質(zhì)與鋰負(fù)極之間的連續(xù)寄生反應(yīng)。因此增加電解質(zhì)的濃度是保證高能量LMBs的有效方法。該濃度對(duì)鋰-絡(luò)合物的量,離子轉(zhuǎn)移數(shù)和離子電導(dǎo)率的產(chǎn)生均有顯著影響。
圖9.可以操作鋰沉積的高濃度電解質(zhì)
a) 1M LiFSI-DME電解質(zhì);
b)4M LiFSI-DME電解質(zhì);
c-d)低速率高速率放電時(shí),鋰金屬負(fù)極上的SEI演變。
3.3 建立人造負(fù)極/電解液界面保護(hù)鋰金屬負(fù)極
在電池外面構(gòu)造具有良好性能的人造負(fù)極-電解質(zhì)界面,可以保護(hù)下面的鋰。金屬鋰和有機(jī)液體電解質(zhì)之間的直接接觸在電池組裝之前被這種人造界面阻擋。因此,可以成功地避免由本征SEI層引起的電解質(zhì)和電極材料的消耗、異質(zhì)沉積和枝晶形成。
3.3.1 通過對(duì)金屬鋰反應(yīng)制作人造SEI層
這種方法是基于金屬鋰和表面上天然膜的極度活潑性。通常,基于對(duì)金屬鋰反應(yīng)的人造SEI層能夠在鋰表面上形成緊致的保護(hù)層。這些保護(hù)層總是含有從原位反應(yīng)中獲得的某些含鋰無機(jī)物質(zhì)。因此,這種人造SEI層不僅具有快速的離子傳導(dǎo)性能,可以平滑沉積過程,而且具有優(yōu)異的機(jī)械強(qiáng)度以阻擋枝晶生長。但是難以獲得均勻而完整的膜,這可能導(dǎo)致不均勻的鋰離子通量或局部沉積增強(qiáng)。另一個(gè)主要缺點(diǎn)是這些保護(hù)層缺乏適應(yīng)內(nèi)部體積變化的靈活性。
圖10.通過對(duì)金屬鋰反應(yīng)的人造SEI層
a)在Li-O2電池組裝之前,在含有1 M LiF3SO3的TEGDME-FEC(5:1 v/v)電解質(zhì)中,鋰負(fù)極上保護(hù)膜的電化學(xué)形成;
b)未處理的鋰箔(上)和Li3PO4改性的鋰箔(下)的形態(tài)演變。
3.3.2 通過涂層制作人造SEI層
與對(duì)金屬鋰的反應(yīng)相比,涂層在控制組成、形態(tài)、機(jī)械強(qiáng)度和柔性方面具有優(yōu)勢(shì)。材料總是涂在平面的鋰或銅箔上,相對(duì)來說,由于消除了全電池表征的預(yù)沉積工藝,因此直接涂覆在鋰箔上更好。聚合物因?yàn)榫哂袃?yōu)異的電絕緣性能和柔性,可以適應(yīng)體積變化,被認(rèn)為是合適的涂層。但涂料仍然存在諸如對(duì)基底的選擇性、限制的鋰離子傳導(dǎo)性等缺點(diǎn)??梢酝茰y(cè),基底和涂層之間的粘合強(qiáng)度決定了最終的結(jié)構(gòu)設(shè)計(jì)和電池性能。
圖11.通過涂層制作的人造SEI層
a)在涂覆多孔PDMS薄膜的Cu基底上沉積鋰;
b)在涂覆中空碳納米球?qū)拥腃u基底上沉積鋰。
涂層和反應(yīng)是在負(fù)極表面上建立人造界面的兩種主要方法,但兩者都具有一些優(yōu)點(diǎn)和缺點(diǎn)。最近,崔屹團(tuán)隊(duì)制作的人造SEI層同時(shí)顯示出了高鋰離子傳導(dǎo)性、機(jī)械強(qiáng)度和柔韌性。
圖12.構(gòu)造理想人造SEI層的潛在最終方法的例證
3.4 功能化中間層抑制鋰枝晶
常規(guī)的非織造聚合物或微孔隔膜太脆弱以至于不能抵抗枝晶,對(duì)鋰沉積行為沒有顯著影響。這里開發(fā)了改進(jìn)的中間層,以進(jìn)一步保證電池的性能,這主要是通過與枝晶或鋰離子通量的相互作用。這里,中間層具有不同的功能,包括專門設(shè)計(jì)的分離器或附加的保護(hù)層,以彌補(bǔ)分離器的弱點(diǎn)。
圖13.抑制枝晶的功能化中間層示意圖
a)具有高模量BN涂層的分離器;
b)具有特別內(nèi)部結(jié)構(gòu)的分離器;
c)具有高模量成分的分離器;
d)具有朝向鋰離子化學(xué)勢(shì)的功能化附加層。
通常,預(yù)期LMBs的理想分離器具有良好的潤濕性、快速的離子傳導(dǎo)性、強(qiáng)的機(jī)械強(qiáng)度和操縱鋰沉積行為的能力。鑒于電池阻抗、重量、體積等因素,直接功能化分離器比插入額外的保護(hù)層更好,盡管后者在組成、結(jié)構(gòu)和性質(zhì)(機(jī)械強(qiáng)度,導(dǎo)電性)等方面具有更多的選擇。
4.挑戰(zhàn)和展望
LOE因?yàn)榫哂袩o與倫比的離子導(dǎo)電性和對(duì)鋰負(fù)極的界面潤濕性而被廣泛使用。然而它們?cè)谧柚怪貜?fù)沉積/溶解時(shí)的枝晶生長和體積膨脹的機(jī)械強(qiáng)度時(shí)卻很差。此外,金屬鋰和液體電解質(zhì)之間的極度活潑性會(huì)引起嚴(yán)重的鋰腐蝕。相應(yīng)的SEI層的斷裂和異質(zhì)性可能會(huì)加速枝晶生長和電解質(zhì)/鋰消耗。為了能量密度、電池性能和安全性,固態(tài)電解質(zhì)的引入似乎是下一代高能量LMBs的基本策略。
4.1 挑戰(zhàn)
上述策略,包括定制負(fù)極結(jié)構(gòu)、優(yōu)化電解質(zhì)、建造人造界面和功能化中間層,確實(shí)減輕了鋰金屬負(fù)極的安全隱患,并顯著提高了LMBs的電化學(xué)性能。然而這些策略仍然存在一些缺點(diǎn):i)如定制負(fù)極結(jié)構(gòu)的方法需要額外的預(yù)沉積工藝來加載每個(gè)電極的鋰源,這在工業(yè)應(yīng)用中是不實(shí)際的;ii)枝晶抑制和電化學(xué)性能之間的困局仍然難以解決;iii)引入特殊設(shè)計(jì)的負(fù)極結(jié)構(gòu)、人造SEI層、保護(hù)層等不可避免地增加了電池阻抗并降低了整個(gè)電池的能量密度;iv)添加劑添加量少,在長期循環(huán)過程中不能持續(xù);v)最有效的方法僅適用于諸如低電流密度、小的鋰沉積能力、特定電解質(zhì)組成、高電解質(zhì)添加等條件。
圖14.采用3D導(dǎo)電主體作為框架,人造SEI層作為屋頂,為極度活潑的鋰建一個(gè)房屋
4.2 展望
固態(tài)電解質(zhì)(SSEs)機(jī)械剛度強(qiáng),并且具有不可燃、非爆炸和零泄漏等特征,似乎是一次性解決鋰枝晶引起的安全隱患的基礎(chǔ)工具。此外,SSEs能從正極吸收可溶性電極組分,防止電極之間不期望的化學(xué)相互作用。更重要的是,固體無機(jī)電解質(zhì)僅允許鋰離子的轉(zhuǎn)移,從而消除了在液體電解質(zhì)中的嚴(yán)重濃度梯度,避免了枝晶形核。因此,SSEs在下一代高能LMBs中具有很大的應(yīng)用潛力,而固體聚合物和無機(jī)電解質(zhì)已經(jīng)在LMBs中得到應(yīng)用,取得了實(shí)質(zhì)性的成功。
圖15.通過涂覆不同的穩(wěn)定材料,改善固體無機(jī)電解質(zhì)和鋰箔之間的固-固界面
a)玻璃陶瓷電解質(zhì)涂層;
b)基于與金屬鋰的合金反應(yīng)的Si涂層。
圖16.結(jié)合了每個(gè)組分優(yōu)點(diǎn)的固體混合電解質(zhì)插圖
a)聚合物/陶瓷/聚合物-三明治電解質(zhì)(左),內(nèi)部曲線是固體混合電解質(zhì)和單個(gè)固體聚合物電解質(zhì)的電勢(shì)分布圖(右);
b)密閉空心SiO2球體作為電解質(zhì)的液態(tài)電解質(zhì)。
5.結(jié)論
復(fù)興鋰金屬電池,有望作為下一代高能電池的負(fù)極材料。本文對(duì)將鋰金屬電池的最新進(jìn)展進(jìn)行了總結(jié),對(duì)鋰金屬負(fù)極的問題及其基本失效機(jī)理進(jìn)行了深入的討論。并結(jié)合指導(dǎo)性原則操縱鋰離子的沉積行為,抑制鋰枝晶的形成/生長,抑制與活性鋰相關(guān)的寄生反應(yīng),以減少循環(huán)時(shí)的體積變化。本文綜述了過去三年液態(tài)有機(jī)電解質(zhì)系統(tǒng)中鋰金屬負(fù)極的發(fā)展和代表性工作,包括定制負(fù)極結(jié)構(gòu)、優(yōu)化電解質(zhì)、建造人造負(fù)極-電解質(zhì)界面和功能化中間層。最后介紹了LOE系統(tǒng)中仍然存在的挑戰(zhàn),并給出了引入固態(tài)電解質(zhì)以徹底解決安全問題的未來展望。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖