中心論題:
- Buck電路對(duì)電感的要求。
- 電感參數(shù)的選擇。
- 磁芯損耗測(cè)試設(shè)備的介紹。
- 多芯電線(xiàn)可以適度環(huán)節(jié)趨膚效應(yīng)。
- 多芯電線(xiàn)對(duì)交流電流紋波遠(yuǎn)小于直流的電路有效降低電感的總損耗。
- 在設(shè)計(jì)開(kāi)關(guān)電源前對(duì)電感的磁芯損耗進(jìn)行測(cè)試簡(jiǎn)化測(cè)試。
Buck電路的電感要求
對(duì)于普通開(kāi)關(guān)電源,相對(duì)于直流I2R損耗來(lái)說(shuō),磁芯損耗幾乎可以忽略不計(jì)。所以通常情況下,除了“自激頻率“這個(gè)與頻率有關(guān)的參數(shù)外,電感幾乎沒(méi)有其他與頻率相關(guān)的參數(shù)。但是,對(duì)于超低功率、超高頻率系統(tǒng)(電池供電設(shè)備),這些高頻損耗(磁芯損耗和線(xiàn)圈損耗)通常會(huì)遠(yuǎn)遠(yuǎn)大于直流損耗。
線(xiàn)圈損耗包括直流I2R損耗和交流損耗。其中,交流損耗主要是由于趨膚效應(yīng)和鄰近效應(yīng)所導(dǎo)致。趨膚效應(yīng)是指隨著頻率的提高移動(dòng)的電荷越來(lái)越趨于導(dǎo)體表面流動(dòng),相當(dāng)于減小了導(dǎo)體導(dǎo)電的橫截面積,提高了交流阻抗。比如:在2MHz頻率,導(dǎo)體導(dǎo)電深度(從導(dǎo)體表面垂直向下)大概只有0.00464厘米。這就導(dǎo)致電流密度降低到原來(lái)的1/e (大概0.37)。鄰近效應(yīng)是指電流在電感相鄰導(dǎo)線(xiàn)所產(chǎn)生的磁場(chǎng)會(huì)互相影響,從而導(dǎo)致所謂的“擁擠電流”,也會(huì)提高交流阻抗。對(duì)于趨膚效應(yīng),可以通過(guò)多芯電線(xiàn)(同一根導(dǎo)線(xiàn)內(nèi)含多根細(xì)導(dǎo)線(xiàn))適度緩解。對(duì)于那些交流電流紋波遠(yuǎn)小于直流電流的電路,多芯電線(xiàn)可以有效降低電感的總損耗。
磁芯損耗主要是由于磁滯現(xiàn)象以及磁芯內(nèi)部傳導(dǎo)率或其他非線(xiàn)性參數(shù)的互感產(chǎn)生。在Buck拓?fù)浣Y(jié)構(gòu)中,第一象限的B-H磁滯回線(xiàn)對(duì)磁芯損耗影響最大。在第一象限這個(gè)局部圖中,磁滯回線(xiàn)顯示了電感從初始電感量過(guò)渡到峰值電感量再回到初始電感量的過(guò)程。如果開(kāi)關(guān)電源穩(wěn)定工作在不連續(xù)狀態(tài),磁滯回線(xiàn)會(huì)從剩余電感量(Br)過(guò)渡到峰值電感量(參考圖1)。如果開(kāi)關(guān)電源工作在連續(xù)狀態(tài),那么磁滯回線(xiàn)將會(huì)從直流偏置點(diǎn)上升到曲線(xiàn)峰值,再回到直流偏置點(diǎn)。通過(guò)實(shí)驗(yàn)可以確定磁滯回線(xiàn)的精確曲線(xiàn)形狀(基本上是橢圓曲線(xiàn))。
圖1 某Buck電路電感B-P磁滯回線(xiàn)
大部分磁芯由粉狀磁性材料和陶瓷等粘合材料構(gòu)成。一個(gè)未使用過(guò)的磁芯可以簡(jiǎn)單地想象成由一層薄薄的粘合材料包裹、彼此獨(dú)立、具有隨機(jī)方向性的大量磁針。由于目前還沒(méi)有能夠很好解釋磁芯損耗的統(tǒng)一模型,所以采用上述這個(gè)經(jīng)驗(yàn)?zāi)P徒忉尨判緭p耗,在本文最后的參考文獻(xiàn)中有更深入的磁芯模型,供讀者參考。
磁性方向近似的鄰近磁針會(huì)互相影響,從而形成“聯(lián)盟”。雖然這些磁針由粘合材料包裹,物理上彼此獨(dú)立,但它們之間的磁場(chǎng)是相互關(guān)聯(lián)的。我們稱(chēng)這些“聯(lián)盟”為“單元”。而單元的邊界就是內(nèi)部“聯(lián)盟”與外部磁針的分割面。在單元的邊界外的磁針比較難與邊界內(nèi)的“聯(lián)盟”聯(lián)合。我們稱(chēng)這些邊界為“單元壁”,這個(gè)模型常用來(lái)解釋磁芯的許
在對(duì)磁芯施加磁場(chǎng)時(shí)(對(duì)線(xiàn)圈施加電流),方向不同的單元相互之間相關(guān)聯(lián)。當(dāng)足夠強(qiáng)的電流形成外加磁場(chǎng)時(shí),那些靠近線(xiàn)圈的單元所處的磁場(chǎng)更強(qiáng),會(huì)首先形成聯(lián)合(更大的單元)。而此時(shí)處在深一層的單元還未受到磁場(chǎng)的影響。聯(lián)合起來(lái)的單元與未受到影響的單元之間的單元壁會(huì)在磁場(chǎng)的作用下,持續(xù)向磁芯中心移動(dòng)。如果線(xiàn)圈中的電流不撤銷(xiāo)或翻轉(zhuǎn)的話(huà),整個(gè)磁芯都將會(huì)聯(lián)合在一起。整個(gè)磁芯的磁針聯(lián)合在一起,我們稱(chēng)為“飽和”。電感制造商給出的B-H磁滯回線(xiàn)正表示磁芯從被磁化的初始階段到飽和階段的過(guò)程。如果將電流減弱,那么單元就會(huì)向自由的初始態(tài)轉(zhuǎn)變,但是有些單元會(huì)繼續(xù)保持聯(lián)合的狀態(tài)。這種不完全的轉(zhuǎn)化就是剩磁(可以在磁滯回線(xiàn)中看出)。這種剩磁現(xiàn)象就會(huì)在下一次單元結(jié)合時(shí)體現(xiàn)為應(yīng)力,導(dǎo)致磁芯損耗。
每個(gè)周期內(nèi)的磁滯損耗為:
WH=mH×dI
式中積分為磁滯回線(xiàn)中的包羅面積,磁芯從初始電感量到峰值電感量,再回到初始電感量的整個(gè)過(guò)程。而在開(kāi)關(guān)頻率為F時(shí)的能量損耗為:
PH = F×mH×dI
計(jì)算這些交流損耗看起來(lái)似乎容易。但是在高頻、中等通流密度下,情況將異常復(fù)雜。每個(gè)電路都存在一些對(duì)磁芯損耗有影響的參數(shù),而這些參數(shù)一般都很難量化。比如:離散電容、PCB布局、驅(qū)動(dòng)電壓、脈沖寬度、負(fù)載狀態(tài)、輸入輸出電壓等。不幸的是,磁芯損耗受這些參數(shù)影響很?chē)?yán)重。
每個(gè)磁芯材料都有能導(dǎo)致?lián)p耗的非線(xiàn)性電導(dǎo)率。正是這個(gè)電導(dǎo)率,會(huì)由于外加磁場(chǎng)而在磁芯內(nèi)部誘發(fā)會(huì)產(chǎn)生損耗 “渦電流”。在恒定磁通量下,磁芯損耗大致與頻率n次方成正比。其中指數(shù)n會(huì)隨磁芯材料以及制造工藝不同而不同。通常的電感制造商會(huì)通過(guò)磁芯損耗曲線(xiàn)擬合出經(jīng)驗(yàn)的近似公式。
電感參數(shù)
Bpk = Eavg/(4×A×N×f)
式中Bpk為尖峰交流通流密度(Teslas);Eavg為每半周期平均交流電壓;A為磁芯橫截面積(平方米);N為線(xiàn)圈匝數(shù);f為頻率(赫茲)。
一般來(lái)講,磁性材料制造商會(huì)評(píng)估磁芯的額定電感系數(shù)-AL。通過(guò)AL可以很容易的計(jì)算出電感量。
L = N2AL
其中AL與磁性材料的摻雜度成正比,也與磁芯的橫截面積除以磁路長(zhǎng)度成正比。磁芯的總損耗等于磁芯的體積乘以Bpk乘以頻率,單位為瓦特/立方米。其與制造材料與制造工藝息息相關(guān)。
磁芯損耗測(cè)試設(shè)備
圖2 測(cè)試測(cè)試剖面圖
在諧振點(diǎn),低損耗的磁芯可以看成L-C共振回路。此時(shí)損耗可以等效為一個(gè)純阻元件(包括線(xiàn)圈損耗和磁芯損耗)。在上面的測(cè)試設(shè)備中,端子A和R都連接著50Ω電阻。此設(shè)備的開(kāi)路(不包括電感)等效為150Ω負(fù)載的振蕩器。在網(wǎng)絡(luò)分析儀上可以表示為:
20×Log(A/R) = 20×Log(50/150) = -9.54 dB
在這個(gè)測(cè)試電路中,諧振電容為2000pF,被測(cè)電感大概為2.5mH~2.8mH,測(cè)試頻率為1kHz。其中,磁性材料的滲透率是一個(gè)與頻率有關(guān)的非線(xiàn)性函數(shù),在更高的頻點(diǎn)上,測(cè)試結(jié)果有可能不同。
磁芯損耗實(shí)驗(yàn)數(shù)據(jù)
結(jié)語(yǔ)
當(dāng)設(shè)計(jì)需要選取低損耗電感時(shí),應(yīng)選取低摻雜度材料來(lái)獲得低的磁場(chǎng)強(qiáng)度參數(shù)-B。并選擇低損耗的磁芯或考慮采用多芯電線(xiàn)。并且,最好采用芯片公司推薦的磁性元件,或者向?qū)?/div>