你的位置:首頁 > EMC安規(guī) > 正文
TI專家教你如何設(shè)計(jì)EMC兼容的汽車開關(guān)穩(wěn)壓器
發(fā)布時(shí)間:2012-07-05 來源:德州儀器
導(dǎo)言:現(xiàn)今的汽車整合了高性能微處理器及DSP,使得核心電壓下降至1V,并且使電流上升5A。使介于6V至40V之間的汽車電池產(chǎn)生如此的電壓及電流需要面臨許多難題,其中一項(xiàng)是達(dá)到電磁兼容性測(cè)試(EMC)的嚴(yán)格標(biāo)準(zhǔn)。您可以花很長(zhǎng)的時(shí)間了解EMI的復(fù)雜度,但是設(shè)計(jì)EMI兼容的開關(guān)穩(wěn)壓器只需要了解應(yīng)用電路及少數(shù)基本電路設(shè)計(jì)屬性及波形分析。TI專家將以沒有復(fù)雜數(shù)學(xué)運(yùn)算的直覺方式,探討成功實(shí)現(xiàn)開關(guān)穩(wěn)壓器的基本因素…
汽車本身不斷變化,驅(qū)動(dòng)汽車的電子裝置也是如此。其中最顯著的莫過于插電式電動(dòng)汽車(PEV),它們采用300V至400V的鋰離子電池和三相推進(jìn)馬達(dá)取代取代燃?xì)夤藓蛢?nèi)燃機(jī)。精密的電池組電量監(jiān)控、再生制動(dòng)系統(tǒng)及復(fù)雜的傳輸控制可將電池使用時(shí)間優(yōu)化,使得電池需要充電的頻率減少。此外,現(xiàn)今的電動(dòng)汽車或其它種類的汽車都具有許多可提升性能、安全、便利性及舒適感的電子模塊。許多中檔車均配備先進(jìn)的全球定位系統(tǒng)(GPS)、集成DVD播放器及高性能音響系統(tǒng)。
伴隨這些先進(jìn)設(shè)備而來的,是對(duì)更高處理速度的需求。因此,現(xiàn)今的汽車整合了高性能微處理器及DSP,使得核心電壓下降至1V,并且使電流上升5A。使介于6V至40V之間的汽車電池產(chǎn)生如此的電壓及電流需要面臨許多難題,其中一項(xiàng)是達(dá)到電磁兼容性測(cè)試(EMC)的嚴(yán)格標(biāo)準(zhǔn)。線性穩(wěn)壓器曾經(jīng)是將汽車電池電壓轉(zhuǎn)換為調(diào)節(jié)的電源電壓所使用的主要方法,但現(xiàn)在已經(jīng)不合時(shí)宜。更準(zhǔn)確地說,線性穩(wěn)壓器使得輸出電壓降低而導(dǎo)致負(fù)載電流增加。開關(guān)穩(wěn)壓器則愈來愈受到廣泛使用,隨之而來的是對(duì)于電磁波干擾(EMI)無線射頻的憂慮,以及對(duì)于安全性系統(tǒng)的重視。
本文將以沒有復(fù)雜數(shù)學(xué)運(yùn)算的直覺方式,探討成功實(shí)現(xiàn)開關(guān)穩(wěn)壓器的基本因素,主要包括:斜率(slew rate)控制、濾波器設(shè)計(jì)、元件選用、配置、噪聲擴(kuò)散及屏蔽。
用簡(jiǎn)單方法實(shí)現(xiàn)開關(guān)電源EMC
本文的目的在于不需要完全了解復(fù)雜的EMI,即可嘗試設(shè)計(jì)EMI兼容的開關(guān)穩(wěn)壓器。事實(shí)上,與EMI有關(guān)的所有問題都來源于未完全達(dá)到開關(guān)穩(wěn)壓器內(nèi)電壓與電流變化的速率,以及與電路板信號(hào)線上或元件內(nèi)寄生電路元件的互動(dòng)方式。以通過額定14V且以5A產(chǎn)生5V電壓的汽車電池產(chǎn)生動(dòng)力的200kHz降壓型開關(guān)穩(wěn)壓器為例,若要達(dá)到可觀的效率,開關(guān)節(jié)點(diǎn)的電壓斜率應(yīng)該只占導(dǎo)通時(shí)間的一小段,例如1/12以下。連續(xù)導(dǎo)電模式(CCM)下運(yùn)作的降壓轉(zhuǎn)換器導(dǎo)通時(shí)間為D/fsw,其中D是負(fù)載周期或脈寬調(diào)制(PWM)信號(hào)開啟時(shí)間百分比與整段時(shí)間的比值(ton及toff),而fsw是轉(zhuǎn)換器的開關(guān)頻率。
對(duì)于CCM中運(yùn)作的降壓轉(zhuǎn)換器,電感電流一直是非零的正電流。在這種情況下,負(fù)載周期為D=Vout/Vin,在本例中為38%(5V/14V)。使用200kHz的開關(guān)頻率時(shí),我們很快計(jì)算出導(dǎo)通時(shí)間為1.8μs。為支持此頻率,控制開關(guān)的上升/下降時(shí)間必須小于90納秒。這使得我們注意到第一個(gè)減少噪聲的方法,也就是斜率控制。您可能還無法理解,但是此時(shí)我們非常了解與PWM切換節(jié)點(diǎn)有關(guān)的諧波,也就是開關(guān)穩(wěn)壓器的控制波形。如果將此波形以圖1(a)中所示的梯形表示,波形的諧波便能夠以圖1(b)中的內(nèi)容表示,這表明了EMI背后的驅(qū)動(dòng)因素。這一傅里葉包絡(luò)定義了可通過傅里葉分析或計(jì)算梯形波形導(dǎo)通時(shí)間及上升時(shí)間取得的諧波振幅。
觀察頻域時(shí),可看出相等上升和下降時(shí)間的梯形波形是由不同的諧波信號(hào)所組成,這些信號(hào)存在于周期信號(hào)基本頻率的整數(shù)倍數(shù)。值得注意的是,各諧波的能量會(huì)在1/(π×τ)的第一個(gè)轉(zhuǎn)折點(diǎn)(導(dǎo)通時(shí)間)減至20dB/dec,并且在1/(π×tr)的第二個(gè)轉(zhuǎn)折點(diǎn)減至40dB/dec。因此,限制開關(guān)節(jié)點(diǎn)波形的斜率會(huì)對(duì)減少發(fā)射量具有重大影響。通過這項(xiàng)探討,應(yīng)該能夠清楚顯示降低運(yùn)作頻率也有利于減少發(fā)射量。
AM射頻頻段考量
汽車EMI規(guī)范的其中一個(gè)難點(diǎn)與AM頻段有關(guān)。該頻段從500kHz開始,一直持續(xù)到2MHz,對(duì)于開關(guān)穩(wěn)壓器而言非常適合。由于梯形波形的最高能量元件是基本元件(假設(shè)沒有任何電路板諧振),因此可在AM頻段上下運(yùn)作。
負(fù)載周期重要嗎?
另一項(xiàng)重要因素是,如果負(fù)載周期剛好是50%,復(fù)雜梯形切換波形的所有能量會(huì)以奇次諧波(1、3、5、7……)呈現(xiàn)。因此,以50%負(fù)載周期運(yùn)作是最壞的情況。在50%上下的負(fù)載周期,即使出現(xiàn)諧波,也會(huì)發(fā)生自然的EMI擴(kuò)散。
EMI及EMC標(biāo)準(zhǔn)
您可以將EMI視為不適宜的能量,而這個(gè)能量不需要太多就有可能違反發(fā)射標(biāo)準(zhǔn)。事實(shí)上,EMI是相當(dāng)?shù)偷哪芰啃?yīng)。例如,在1MHz的狀況下,只要20nW的EMI便會(huì)違反FCC對(duì)于傳導(dǎo)發(fā)射的規(guī)范。傳導(dǎo)發(fā)射是以頻譜分析儀監(jiān)測(cè)輸入來源高頻率元件而測(cè)得。線路阻抗穩(wěn)定網(wǎng)路(LISN)可作為開關(guān)穩(wěn)壓器的低阻抗,以及頻譜分析儀線路噪聲的高通濾波器。因此,開關(guān)穩(wěn)壓器的輸入是下一個(gè)需要注意之處。
[page]
輸入濾波器的考量
造成汽車出現(xiàn)EMI的其中一個(gè)主要因素是開關(guān)穩(wěn)壓器在電源排線上傳入AC電流。這些變化的電流本身具有輻射發(fā)射及傳導(dǎo)發(fā)射的各種波形。例如,在非隔離式升壓轉(zhuǎn)換器中,圖2(a)所示的輸入電容(C2)及升壓電感(L1)形成隔離線路發(fā)射的單向EMI濾波器。不過,輸入電流具有該波形傅里葉擴(kuò)展的AC三角波形,如圖2(b)的綠色信號(hào)線所示。
只要加入L2及C2,波形便會(huì)變成正弦曲線,而能量會(huì)重新調(diào)整為相當(dāng)?shù)偷母哳l率峰值。不過,如果不能正確設(shè)計(jì)輸入濾波器,則會(huì)將噪聲放大而使得控制回路不穩(wěn)定。因此,了解濾波器設(shè)計(jì)的概念,對(duì)于優(yōu)化濾波器回波及成本相當(dāng)重要。使用SPICE的AC分析是有效了解濾波器行為的工具。
不論是設(shè)計(jì)降壓或升壓電源,差動(dòng)模式濾波器或雙向電容輸入濾波器都相當(dāng)實(shí)用,這些能夠避免EMI噪聲進(jìn)入線路以及輻射和/或傳導(dǎo)噪聲。需要注意的是,與濾波器元件相關(guān)的跨繞組終端電容及電容ESR等寄生元件會(huì)明顯影響諧波的衰減,因此應(yīng)該謹(jǐn)慎使用。
選用正確的元件
元件選擇是設(shè)計(jì)EMI兼容開關(guān)穩(wěn)壓器的關(guān)鍵部分。例如,屏蔽的電感有助于縮小會(huì)產(chǎn)生輻射且耦合成為互感及高阻抗電路(例如PWM控制器的輸入誤差放大器)的漏磁場(chǎng)。
具有軟反向或低反向恢復(fù)特性的二極管,能夠?qū)膶?dǎo)通狀態(tài)變成截止?fàn)顟B(tài)的二極管相關(guān)的大浪涌電流降至最低。這些峰值電流會(huì)與寄生電容產(chǎn)生作用,而在超出100MHz的切換節(jié)點(diǎn)造成振蕩,并且對(duì)EMC試驗(yàn)造成不良影響。雖然不在本文的討論范圍內(nèi),但還是需要說明的是:不正確選用開關(guān)穩(wěn)壓器的回路補(bǔ)償元件,會(huì)使得EMI加劇。如果未正確補(bǔ)償電源供應(yīng),輸出紋波及不穩(wěn)定現(xiàn)象會(huì)使噪聲增加。經(jīng)過適當(dāng)補(bǔ)償?shù)碾娫垂?yīng)是達(dá)到良好噪聲性能的關(guān)鍵。
謹(jǐn)記電流經(jīng)過的路徑
現(xiàn)在需要處理EMI兼容開關(guān)穩(wěn)壓器最容易控制的必需層面,也就是電路信號(hào)線路徑及元件位置。元件位置會(huì)在很大程度上影響電路信號(hào)線路徑。前文曾經(jīng)說過EMI是不適宜的能量,而且變化的電流及電壓會(huì)通過寄生電容、互感或空氣耦合到敏感電路(例如高阻抗)。因此,對(duì)于將來源的發(fā)射量降至最低、元件位置及電流路徑具有重要的效用。
在一個(gè)電源的正確配置中,必須將大電流導(dǎo)體的回路部分縮減至最小。這樣做能夠?qū)⒆鳛樘炀€源和發(fā)射能量的電感降至最低。其中一個(gè)層面是有效放置元件及選用去耦電容。圖3顯示同步降壓轉(zhuǎn)換器的輸出功率級(jí)與濾波器。C3將功率級(jí)去耦合,以便在Q2啟動(dòng)時(shí)提供低阻抗源。為了將輻射發(fā)射量降至最低,必須如圖所示連接C3,其中電容的固有阻抗、電路信號(hào)線及通過電感的互連均縮減至最小。另外,也需要具有諸如X7R等高自振頻率的高品質(zhì)電容電介質(zhì)。
[page]
屏蔽
本文將說明的最后幾項(xiàng)技術(shù)是噪聲屏蔽及噪聲擴(kuò)散,這些可在運(yùn)用前文討論的技術(shù)之后用來提升噪聲容限。如果未達(dá)到EMC標(biāo)準(zhǔn)或噪聲容限不足,則需要外部屏蔽來轉(zhuǎn)移輻射電場(chǎng)發(fā)射量,以免傳輸?shù)紼MC接收器天線。
散熱器或磁性核心等表面出現(xiàn)開關(guān)電壓時(shí),會(huì)產(chǎn)生電場(chǎng)。通常通過導(dǎo)電機(jī)殼即可屏蔽電場(chǎng),其中的導(dǎo)電材料可將電場(chǎng)轉(zhuǎn)換為電流,以隔離電場(chǎng)。當(dāng)然,其中也必須有該電流的路徑(一般是接地)。但是,該電流造成的整個(gè)傳導(dǎo)噪聲能量需要用濾波器加以解決。外部磁場(chǎng)屏蔽更具挑戰(zhàn)性(成本高),而且在較高頻率時(shí)的效果不佳。因此,應(yīng)該謹(jǐn)慎設(shè)計(jì)相關(guān)磁性元件及電路板回路部分。
采用擴(kuò)散頻譜
最后,本文將探討另一項(xiàng)越來越受到廣泛使用的技術(shù),能夠?qū)⒎逯抵C波能量散布于較大的頻帶,以有效降低該能量。該技術(shù)被稱為展頻頻率抖動(dòng)(SSFD),能夠通過諧波峰值的降低將噪聲信號(hào)從窄頻變成寬頻,以改變?cè)肼曨l譜。其中必須了解能量頻譜的變化,而整個(gè)能量則維持不變。最終的結(jié)果是噪聲水平一般會(huì)增加,從而損害高保真系統(tǒng)。圖4顯示發(fā)生的諧波擴(kuò)散及峰值降低。一般降低的幅度為5至10dB,后續(xù)的諧波會(huì)增加峰值降低的幅度。
本文小結(jié)
您可以花很長(zhǎng)的時(shí)間了解EMI的復(fù)雜度,但是設(shè)計(jì)EMI兼容的開關(guān)穩(wěn)壓器只需要了解應(yīng)用電路及少數(shù)基本電路設(shè)計(jì)屬性及波形分析。不論是設(shè)計(jì)汽車的開關(guān)穩(wěn)壓器,還是設(shè)計(jì)不使用電池的開關(guān)穩(wěn)壓器或復(fù)雜的PEV電池充電器,設(shè)計(jì)EMI兼容的開關(guān)穩(wěn)壓器都需要了解Maxwell方程式的概念。幸好對(duì)于我們大多數(shù)人而言,其中并未涉及偏微分方程式,而只需要注意快速改變電壓/電流時(shí)出現(xiàn)的磁場(chǎng)及電場(chǎng),并了解本文中所述的技術(shù)即可。
汽車本身不斷變化,驅(qū)動(dòng)汽車的電子裝置也是如此。其中最顯著的莫過于插電式電動(dòng)汽車(PEV),它們采用300V至400V的鋰離子電池和三相推進(jìn)馬達(dá)取代取代燃?xì)夤藓蛢?nèi)燃機(jī)。精密的電池組電量監(jiān)控、再生制動(dòng)系統(tǒng)及復(fù)雜的傳輸控制可將電池使用時(shí)間優(yōu)化,使得電池需要充電的頻率減少。此外,現(xiàn)今的電動(dòng)汽車或其它種類的汽車都具有許多可提升性能、安全、便利性及舒適感的電子模塊。許多中檔車均配備先進(jìn)的全球定位系統(tǒng)(GPS)、集成DVD播放器及高性能音響系統(tǒng)。
伴隨這些先進(jìn)設(shè)備而來的,是對(duì)更高處理速度的需求。因此,現(xiàn)今的汽車整合了高性能微處理器及DSP,使得核心電壓下降至1V,并且使電流上升5A。使介于6V至40V之間的汽車電池產(chǎn)生如此的電壓及電流需要面臨許多難題,其中一項(xiàng)是達(dá)到電磁兼容性測(cè)試(EMC)的嚴(yán)格標(biāo)準(zhǔn)。線性穩(wěn)壓器曾經(jīng)是將汽車電池電壓轉(zhuǎn)換為調(diào)節(jié)的電源電壓所使用的主要方法,但現(xiàn)在已經(jīng)不合時(shí)宜。更準(zhǔn)確地說,線性穩(wěn)壓器使得輸出電壓降低而導(dǎo)致負(fù)載電流增加。開關(guān)穩(wěn)壓器則愈來愈受到廣泛使用,隨之而來的是對(duì)于電磁波干擾(EMI)無線射頻的憂慮,以及對(duì)于安全性系統(tǒng)的重視。
本文將以沒有復(fù)雜數(shù)學(xué)運(yùn)算的直覺方式,探討成功實(shí)現(xiàn)開關(guān)穩(wěn)壓器的基本因素,主要包括:斜率(slew rate)控制、濾波器設(shè)計(jì)、元件選用、配置、噪聲擴(kuò)散及屏蔽。
用簡(jiǎn)單方法實(shí)現(xiàn)開關(guān)電源EMC
本文的目的在于不需要完全了解復(fù)雜的EMI,即可嘗試設(shè)計(jì)EMI兼容的開關(guān)穩(wěn)壓器。事實(shí)上,與EMI有關(guān)的所有問題都來源于未完全達(dá)到開關(guān)穩(wěn)壓器內(nèi)電壓與電流變化的速率,以及與電路板信號(hào)線上或元件內(nèi)寄生電路元件的互動(dòng)方式。以通過額定14V且以5A產(chǎn)生5V電壓的汽車電池產(chǎn)生動(dòng)力的200kHz降壓型開關(guān)穩(wěn)壓器為例,若要達(dá)到可觀的效率,開關(guān)節(jié)點(diǎn)的電壓斜率應(yīng)該只占導(dǎo)通時(shí)間的一小段,例如1/12以下。連續(xù)導(dǎo)電模式(CCM)下運(yùn)作的降壓轉(zhuǎn)換器導(dǎo)通時(shí)間為D/fsw,其中D是負(fù)載周期或脈寬調(diào)制(PWM)信號(hào)開啟時(shí)間百分比與整段時(shí)間的比值(ton及toff),而fsw是轉(zhuǎn)換器的開關(guān)頻率。
對(duì)于CCM中運(yùn)作的降壓轉(zhuǎn)換器,電感電流一直是非零的正電流。在這種情況下,負(fù)載周期為D=Vout/Vin,在本例中為38%(5V/14V)。使用200kHz的開關(guān)頻率時(shí),我們很快計(jì)算出導(dǎo)通時(shí)間為1.8μs。為支持此頻率,控制開關(guān)的上升/下降時(shí)間必須小于90納秒。這使得我們注意到第一個(gè)減少噪聲的方法,也就是斜率控制。您可能還無法理解,但是此時(shí)我們非常了解與PWM切換節(jié)點(diǎn)有關(guān)的諧波,也就是開關(guān)穩(wěn)壓器的控制波形。如果將此波形以圖1(a)中所示的梯形表示,波形的諧波便能夠以圖1(b)中的內(nèi)容表示,這表明了EMI背后的驅(qū)動(dòng)因素。這一傅里葉包絡(luò)定義了可通過傅里葉分析或計(jì)算梯形波形導(dǎo)通時(shí)間及上升時(shí)間取得的諧波振幅。
觀察頻域時(shí),可看出相等上升和下降時(shí)間的梯形波形是由不同的諧波信號(hào)所組成,這些信號(hào)存在于周期信號(hào)基本頻率的整數(shù)倍數(shù)。值得注意的是,各諧波的能量會(huì)在1/(π×τ)的第一個(gè)轉(zhuǎn)折點(diǎn)(導(dǎo)通時(shí)間)減至20dB/dec,并且在1/(π×tr)的第二個(gè)轉(zhuǎn)折點(diǎn)減至40dB/dec。因此,限制開關(guān)節(jié)點(diǎn)波形的斜率會(huì)對(duì)減少發(fā)射量具有重大影響。通過這項(xiàng)探討,應(yīng)該能夠清楚顯示降低運(yùn)作頻率也有利于減少發(fā)射量。
AM射頻頻段考量
汽車EMI規(guī)范的其中一個(gè)難點(diǎn)與AM頻段有關(guān)。該頻段從500kHz開始,一直持續(xù)到2MHz,對(duì)于開關(guān)穩(wěn)壓器而言非常適合。由于梯形波形的最高能量元件是基本元件(假設(shè)沒有任何電路板諧振),因此可在AM頻段上下運(yùn)作。
負(fù)載周期重要嗎?
另一項(xiàng)重要因素是,如果負(fù)載周期剛好是50%,復(fù)雜梯形切換波形的所有能量會(huì)以奇次諧波(1、3、5、7……)呈現(xiàn)。因此,以50%負(fù)載周期運(yùn)作是最壞的情況。在50%上下的負(fù)載周期,即使出現(xiàn)諧波,也會(huì)發(fā)生自然的EMI擴(kuò)散。
EMI及EMC標(biāo)準(zhǔn)
您可以將EMI視為不適宜的能量,而這個(gè)能量不需要太多就有可能違反發(fā)射標(biāo)準(zhǔn)。事實(shí)上,EMI是相當(dāng)?shù)偷哪芰啃?yīng)。例如,在1MHz的狀況下,只要20nW的EMI便會(huì)違反FCC對(duì)于傳導(dǎo)發(fā)射的規(guī)范。傳導(dǎo)發(fā)射是以頻譜分析儀監(jiān)測(cè)輸入來源高頻率元件而測(cè)得。線路阻抗穩(wěn)定網(wǎng)路(LISN)可作為開關(guān)穩(wěn)壓器的低阻抗,以及頻譜分析儀線路噪聲的高通濾波器。因此,開關(guān)穩(wěn)壓器的輸入是下一個(gè)需要注意之處。
[page]
輸入濾波器的考量
造成汽車出現(xiàn)EMI的其中一個(gè)主要因素是開關(guān)穩(wěn)壓器在電源排線上傳入AC電流。這些變化的電流本身具有輻射發(fā)射及傳導(dǎo)發(fā)射的各種波形。例如,在非隔離式升壓轉(zhuǎn)換器中,圖2(a)所示的輸入電容(C2)及升壓電感(L1)形成隔離線路發(fā)射的單向EMI濾波器。不過,輸入電流具有該波形傅里葉擴(kuò)展的AC三角波形,如圖2(b)的綠色信號(hào)線所示。
只要加入L2及C2,波形便會(huì)變成正弦曲線,而能量會(huì)重新調(diào)整為相當(dāng)?shù)偷母哳l率峰值。不過,如果不能正確設(shè)計(jì)輸入濾波器,則會(huì)將噪聲放大而使得控制回路不穩(wěn)定。因此,了解濾波器設(shè)計(jì)的概念,對(duì)于優(yōu)化濾波器回波及成本相當(dāng)重要。使用SPICE的AC分析是有效了解濾波器行為的工具。
不論是設(shè)計(jì)降壓或升壓電源,差動(dòng)模式濾波器或雙向電容輸入濾波器都相當(dāng)實(shí)用,這些能夠避免EMI噪聲進(jìn)入線路以及輻射和/或傳導(dǎo)噪聲。需要注意的是,與濾波器元件相關(guān)的跨繞組終端電容及電容ESR等寄生元件會(huì)明顯影響諧波的衰減,因此應(yīng)該謹(jǐn)慎使用。
選用正確的元件
元件選擇是設(shè)計(jì)EMI兼容開關(guān)穩(wěn)壓器的關(guān)鍵部分。例如,屏蔽的電感有助于縮小會(huì)產(chǎn)生輻射且耦合成為互感及高阻抗電路(例如PWM控制器的輸入誤差放大器)的漏磁場(chǎng)。
具有軟反向或低反向恢復(fù)特性的二極管,能夠?qū)膶?dǎo)通狀態(tài)變成截止?fàn)顟B(tài)的二極管相關(guān)的大浪涌電流降至最低。這些峰值電流會(huì)與寄生電容產(chǎn)生作用,而在超出100MHz的切換節(jié)點(diǎn)造成振蕩,并且對(duì)EMC試驗(yàn)造成不良影響。雖然不在本文的討論范圍內(nèi),但還是需要說明的是:不正確選用開關(guān)穩(wěn)壓器的回路補(bǔ)償元件,會(huì)使得EMI加劇。如果未正確補(bǔ)償電源供應(yīng),輸出紋波及不穩(wěn)定現(xiàn)象會(huì)使噪聲增加。經(jīng)過適當(dāng)補(bǔ)償?shù)碾娫垂?yīng)是達(dá)到良好噪聲性能的關(guān)鍵。
謹(jǐn)記電流經(jīng)過的路徑
現(xiàn)在需要處理EMI兼容開關(guān)穩(wěn)壓器最容易控制的必需層面,也就是電路信號(hào)線路徑及元件位置。元件位置會(huì)在很大程度上影響電路信號(hào)線路徑。前文曾經(jīng)說過EMI是不適宜的能量,而且變化的電流及電壓會(huì)通過寄生電容、互感或空氣耦合到敏感電路(例如高阻抗)。因此,對(duì)于將來源的發(fā)射量降至最低、元件位置及電流路徑具有重要的效用。
在一個(gè)電源的正確配置中,必須將大電流導(dǎo)體的回路部分縮減至最小。這樣做能夠?qū)⒆鳛樘炀€源和發(fā)射能量的電感降至最低。其中一個(gè)層面是有效放置元件及選用去耦電容。圖3顯示同步降壓轉(zhuǎn)換器的輸出功率級(jí)與濾波器。C3將功率級(jí)去耦合,以便在Q2啟動(dòng)時(shí)提供低阻抗源。為了將輻射發(fā)射量降至最低,必須如圖所示連接C3,其中電容的固有阻抗、電路信號(hào)線及通過電感的互連均縮減至最小。另外,也需要具有諸如X7R等高自振頻率的高品質(zhì)電容電介質(zhì)。
[page]
屏蔽
本文將說明的最后幾項(xiàng)技術(shù)是噪聲屏蔽及噪聲擴(kuò)散,這些可在運(yùn)用前文討論的技術(shù)之后用來提升噪聲容限。如果未達(dá)到EMC標(biāo)準(zhǔn)或噪聲容限不足,則需要外部屏蔽來轉(zhuǎn)移輻射電場(chǎng)發(fā)射量,以免傳輸?shù)紼MC接收器天線。
散熱器或磁性核心等表面出現(xiàn)開關(guān)電壓時(shí),會(huì)產(chǎn)生電場(chǎng)。通常通過導(dǎo)電機(jī)殼即可屏蔽電場(chǎng),其中的導(dǎo)電材料可將電場(chǎng)轉(zhuǎn)換為電流,以隔離電場(chǎng)。當(dāng)然,其中也必須有該電流的路徑(一般是接地)。但是,該電流造成的整個(gè)傳導(dǎo)噪聲能量需要用濾波器加以解決。外部磁場(chǎng)屏蔽更具挑戰(zhàn)性(成本高),而且在較高頻率時(shí)的效果不佳。因此,應(yīng)該謹(jǐn)慎設(shè)計(jì)相關(guān)磁性元件及電路板回路部分。
采用擴(kuò)散頻譜
最后,本文將探討另一項(xiàng)越來越受到廣泛使用的技術(shù),能夠?qū)⒎逯抵C波能量散布于較大的頻帶,以有效降低該能量。該技術(shù)被稱為展頻頻率抖動(dòng)(SSFD),能夠通過諧波峰值的降低將噪聲信號(hào)從窄頻變成寬頻,以改變?cè)肼曨l譜。其中必須了解能量頻譜的變化,而整個(gè)能量則維持不變。最終的結(jié)果是噪聲水平一般會(huì)增加,從而損害高保真系統(tǒng)。圖4顯示發(fā)生的諧波擴(kuò)散及峰值降低。一般降低的幅度為5至10dB,后續(xù)的諧波會(huì)增加峰值降低的幅度。
本文小結(jié)
您可以花很長(zhǎng)的時(shí)間了解EMI的復(fù)雜度,但是設(shè)計(jì)EMI兼容的開關(guān)穩(wěn)壓器只需要了解應(yīng)用電路及少數(shù)基本電路設(shè)計(jì)屬性及波形分析。不論是設(shè)計(jì)汽車的開關(guān)穩(wěn)壓器,還是設(shè)計(jì)不使用電池的開關(guān)穩(wěn)壓器或復(fù)雜的PEV電池充電器,設(shè)計(jì)EMI兼容的開關(guān)穩(wěn)壓器都需要了解Maxwell方程式的概念。幸好對(duì)于我們大多數(shù)人而言,其中并未涉及偏微分方程式,而只需要注意快速改變電壓/電流時(shí)出現(xiàn)的磁場(chǎng)及電場(chǎng),并了解本文中所述的技術(shù)即可。
特別推薦
- 兆易創(chuàng)新GD32F30x STL軟件測(cè)試庫獲得德國(guó)萊茵TüV IEC 61508功能安全認(rèn)證
- 芯科科技第三代無線開發(fā)平臺(tái)引領(lǐng)物聯(lián)網(wǎng)發(fā)展
- MSO 4B 示波器為工程師帶來更多臺(tái)式功率分析工具
- 艾為電子推出新一代高線性度GNSS低噪聲放大器——AW15745DNR
- 瑞薩發(fā)布四通道主站IC和傳感器信號(hào)調(diào)節(jié)器, 以推動(dòng)不斷增長(zhǎng)的IO-Link市場(chǎng)
- e絡(luò)盟現(xiàn)貨供應(yīng) Abracon 新推出的 AOTA 系列微型鑄型電感器
- 加賀富儀艾電子推出支持Wi-Fi 6和藍(lán)牙的無線局域網(wǎng)/藍(lán)牙組合模塊
技術(shù)文章更多>>
- 數(shù)字驅(qū)動(dòng)工業(yè),智能賦能制造 AMTS & AHTE SOUTH CHINA 2024同期會(huì)議全公開!
- 團(tuán)體觀展招募!104CEF開啟組團(tuán)觀眾通道,解鎖更多禮遇
- 觸摸式OLED顯示屏有望重新定義汽車用戶界面
- 用Python自動(dòng)化雙脈沖測(cè)試
- 揭秘電動(dòng)汽車中直流鏈路電容器的奧秘(上)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電阻觸控屏
電阻器
電阻作用
調(diào)速開關(guān)
調(diào)諧器
鼎智
動(dòng)力電池
動(dòng)力控制
獨(dú)石電容
端子機(jī)
斷路器
斷路器型號(hào)
多層PCB
多諧振蕩器
扼流線圈
耳機(jī)
二極管
二極管符號(hào)
發(fā)光二極管
防靜電產(chǎn)品
防雷
防水連接器
仿真工具
放大器
分立器件
分頻器
風(fēng)力渦輪機(jī)
風(fēng)能
風(fēng)扇
風(fēng)速風(fēng)向儀