導言:現(xiàn)今的汽車整合了高性能微處理器及DSP,使得核心電壓下降至1V,并且使電流上升5A。使介于6V至40V之間的汽車電池產生如此的電壓及電流需要面臨許多難題,其中一項是達到電磁兼容性測試(EMC)的嚴格標準。您可以花很長的時間了解EMI的復雜度,但是設計EMI兼容的開關穩(wěn)壓器只需要了解應用電路及少數(shù)基本電路設計屬性及波形分析。TI專家將以沒有復雜數(shù)學運算的直覺方式,探討成功實現(xiàn)開關穩(wěn)壓器的基本因素…
汽車本身不斷變化,驅動汽車的電子裝置也是如此。其中最顯著的莫過于插電式電動汽車(PEV),它們采用300V至400V的鋰離子電池和三相推進馬達取代取代燃氣罐和內燃機。精密的電池組電量監(jiān)控、再生制動系統(tǒng)及復雜的傳輸控制可將電池使用時間優(yōu)化,使得電池需要充電的頻率減少。此外,現(xiàn)今的電動汽車或其它種類的汽車都具有許多可提升性能、安全、便利性及舒適感的電子模塊。許多中檔車均配備先進的全球定位系統(tǒng)(GPS)、集成DVD播放器及高性能音響系統(tǒng)。
伴隨這些先進設備而來的,是對更高處理速度的需求。因此,現(xiàn)今的汽車整合了高性能微處理器及DSP,使得核心電壓下降至1V,并且使電流上升5A。使介于6V至40V之間的汽車電池產生如此的電壓及電流需要面臨許多難題,其中一項是達到電磁兼容性測試(EMC)的嚴格標準。線性穩(wěn)壓器曾經(jīng)是將汽車電池電壓轉換為調節(jié)的電源電壓所使用的主要方法,但現(xiàn)在已經(jīng)不合時宜。更準確地說,線性穩(wěn)壓器使得輸出電壓降低而導致負載電流增加。開關穩(wěn)壓器則愈來愈受到廣泛使用,隨之而來的是對于電磁波干擾(EMI)無線射頻的憂慮,以及對于安全性系統(tǒng)的重視。
本文將以沒有復雜數(shù)學運算的直覺方式,探討成功實現(xiàn)開關穩(wěn)壓器的基本因素,主要包括:斜率(slew rate)控制、濾波器設計、元件選用、配置、噪聲擴散及屏蔽。
用簡單方法實現(xiàn)開關電源EMC
本文的目的在于不需要完全了解復雜的EMI,即可嘗試設計EMI兼容的開關穩(wěn)壓器。事實上,與EMI有關的所有問題都來源于未完全達到開關穩(wěn)壓器內電壓與電流變化的速率,以及與電路板信號線上或元件內寄生電路元件的互動方式。以通過額定14V且以5A產生5V電壓的汽車電池產生動力的200kHz降壓型開關穩(wěn)壓器為例,若要達到可觀的效率,開關節(jié)點的電壓斜率應該只占導通時間的一小段,例如1/12以下。連續(xù)導電模式(CCM)下運作的降壓轉換器導通時間為D/fsw,其中D是負載周期或脈寬調制(PWM)信號開啟時間百分比與整段時間的比值(ton及toff),而fsw是轉換器的開關頻率。
對于CCM中運作的降壓轉換器,電感電流一直是非零的正電流。在這種情況下,負載周期為D=Vout/Vin,在本例中為38%(5V/14V)。使用200kHz的開關頻率時,我們很快計算出導通時間為1.8μs。為支持此頻率,控制開關的上升/下降時間必須小于90納秒。這使得我們注意到第一個減少噪聲的方法,也就是斜率控制。您可能還無法理解,但是此時我們非常了解與PWM切換節(jié)點有關的諧波,也就是開關穩(wěn)壓器的控制波形。如果將此波形以圖1(a)中所示的梯形表示,波形的諧波便能夠以圖1(b)中的內容表示,這表明了EMI背后的驅動因素。這一傅里葉包絡定義了可通過傅里葉分析或計算梯形波形導通時間及上升時間取得的諧波振幅。
觀察頻域時,可看出相等上升和下降時間的梯形波形是由不同的諧波信號所組成,這些信號存在于周期信號基本頻率的整數(shù)倍數(shù)。值得注意的是,各諧波的能量會在1/(π×τ)的第一個轉折點(導通時間)減至20dB/dec,并且在1/(π×tr)的第二個轉折點減至40dB/dec。因此,限制開關節(jié)點波形的斜率會對減少發(fā)射量具有重大影響。通過這項探討,應該能夠清楚顯示降低運作頻率也有利于減少發(fā)射量。
AM射頻頻段考量
汽車EMI規(guī)范的其中一個難點與AM頻段有關。該頻段從500kHz開始,一直持續(xù)到2MHz,對于開關穩(wěn)壓器而言非常適合。由于梯形波形的最高能量元件是基本元件(假設沒有任何電路板諧振),因此可在AM頻段上下運作。
負載周期重要嗎?
另一項重要因素是,如果負載周期剛好是50%,復雜梯形切換波形的所有能量會以奇次諧波(1、3、5、7……)呈現(xiàn)。因此,以50%負載周期運作是最壞的情況。在50%上下的負載周期,即使出現(xiàn)諧波,也會發(fā)生自然的EMI擴散。
EMI及EMC標準
您可以將EMI視為不適宜的能量,而這個能量不需要太多就有可能違反發(fā)射標準。事實上,EMI是相當?shù)偷哪芰啃?。例如,?MHz的狀況下,只要20nW的EMI便會違反FCC對于傳導發(fā)射的規(guī)范。傳導發(fā)射是以頻譜分析儀監(jiān)測輸入來源高頻率元件而測得。線路阻抗穩(wěn)定網(wǎng)路(LISN)可作為開關穩(wěn)壓器的低阻抗,以及頻譜分析儀線路噪聲的高通濾波器。因此,開關穩(wěn)壓器的輸入是下一個需要注意之處。
[page]
輸入濾波器的考量
造成汽車出現(xiàn)EMI的其中一個主要因素是開關穩(wěn)壓器在電源排線上傳入AC電流。這些變化的電流本身具有輻射發(fā)射及傳導發(fā)射的各種波形。例如,在非隔離式升壓轉換器中,圖2(a)所示的輸入電容(C2)及升壓電感(L1)形成隔離線路發(fā)射的單向EMI濾波器。不過,輸入電流具有該波形傅里葉擴展的AC三角波形,如圖2(b)的綠色信號線所示。
只要加入L2及C2,波形便會變成正弦曲線,而能量會重新調整為相當?shù)偷母哳l率峰值。不過,如果不能正確設計輸入濾波器,則會將噪聲放大而使得控制回路不穩(wěn)定。因此,了解濾波器設計的概念,對于優(yōu)化濾波器回波及成本相當重要。使用SPICE的AC分析是有效了解濾波器行為的工具。
不論是設計降壓或升壓電源,差動模式濾波器或雙向電容輸入濾波器都相當實用,這些能夠避免EMI噪聲進入線路以及輻射和/或傳導噪聲。需要注意的是,與濾波器元件相關的跨繞組終端電容及電容ESR等寄生元件會明顯影響諧波的衰減,因此應該謹慎使用。
選用正確的元件
元件選擇是設計EMI兼容開關穩(wěn)壓器的關鍵部分。例如,屏蔽的電感有助于縮小會產生輻射且耦合成為互感及高阻抗電路(例如PWM控制器的輸入誤差放大器)的漏磁場。
具有軟反向或低反向恢復特性的二極管,能夠將從導通狀態(tài)變成截止狀態(tài)的二極管相關的大浪涌電流降至最低。這些峰值電流會與寄生電容產生作用,而在超出100MHz的切換節(jié)點造成振蕩,并且對EMC試驗造成不良影響。雖然不在本文的討論范圍內,但還是需要說明的是:不正確選用開關穩(wěn)壓器的回路補償元件,會使得EMI加劇。如果未正確補償電源供應,輸出紋波及不穩(wěn)定現(xiàn)象會使噪聲增加。經(jīng)過適當補償?shù)碾娫垂沁_到良好噪聲性能的關鍵。
謹記電流經(jīng)過的路徑
現(xiàn)在需要處理EMI兼容開關穩(wěn)壓器最容易控制的必需層面,也就是電路信號線路徑及元件位置。元件位置會在很大程度上影響電路信號線路徑。前文曾經(jīng)說過EMI是不適宜的能量,而且變化的電流及電壓會通過寄生電容、互感或空氣耦合到敏感電路(例如高阻抗)。因此,對于將來源的發(fā)射量降至最低、元件位置及電流路徑具有重要的效用。
在一個電源的正確配置中,必須將大電流導體的回路部分縮減至最小。這樣做能夠將作為天線源和發(fā)射能量的電感降至最低。其中一個層面是有效放置元件及選用去耦電容。圖3顯示同步降壓轉換器的輸出功率級與濾波器。C3將功率級去耦合,以便在Q2啟動時提供低阻抗源。為了將輻射發(fā)射量降至最低,必須如圖所示連接C3,其中電容的固有阻抗、電路信號線及通過電感的互連均縮減至最小。另外,也需要具有諸如X7R等高自振頻率的高品質電容電介質。
[page]
屏蔽
本文將說明的最后幾項技術是噪聲屏蔽及噪聲擴散,這些可在運用前文討論的技術之后用來提升噪聲容限。如果未達到EMC標準或噪聲容限不足,則需要外部屏蔽來轉移輻射電場發(fā)射量,以免傳輸?shù)紼MC接收器天線。
散熱器或磁性核心等表面出現(xiàn)開關電壓時,會產生電場。通常通過導電機殼即可屏蔽電場,其中的導電材料可將電場轉換為電流,以隔離電場。當然,其中也必須有該電流的路徑(一般是接地)。但是,該電流造成的整個傳導噪聲能量需要用濾波器加以解決。外部磁場屏蔽更具挑戰(zhàn)性(成本高),而且在較高頻率時的效果不佳。因此,應該謹慎設計相關磁性元件及電路板回路部分。
采用擴散頻譜
最后,本文將探討另一項越來越受到廣泛使用的技術,能夠將峰值諧波能量散布于較大的頻帶,以有效降低該能量。該技術被稱為展頻頻率抖動(SSFD),能夠通過諧波峰值的降低將噪聲信號從窄頻變成寬頻,以改變噪聲頻譜。其中必須了解能量頻譜的變化,而整個能量則維持不變。最終的結果是噪聲水平一般會增加,從而損害高保真系統(tǒng)。圖4顯示發(fā)生的諧波擴散及峰值降低。一般降低的幅度為5至10dB,后續(xù)的諧波會增加峰值降低的幅度。
本文小結
您可以花很長的時間了解EMI的復雜度,但是設計EMI兼容的開關穩(wěn)壓器只需要了解應用電路及少數(shù)基本電路設計屬性及波形分析。不論是設計汽車的開關穩(wěn)壓器,還是設計不使用電池的開關穩(wěn)壓器或復雜的PEV電池充電器,設計EMI兼容的開關穩(wěn)壓器都需要了解Maxwell方程式的概念。幸好對于我們大多數(shù)人而言,其中并未涉及偏微分方程式,而只需要注意快速改變電壓/電流時出現(xiàn)的磁場及電場,并了解本文中所述的技術即可。
特別推薦
- 授權代理商貿澤電子供應Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設計
- ADI電機運動控制解決方案 驅動智能運動新時代
- 倍福推出采用 TwinSAFE SC 技術的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產品 MTCH2120
技術文章更多>>
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務平臺
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設備指令(RED)信息安全標準
- 功率器件熱設計基礎(九)——功率半導體模塊的熱擴散
技術白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索