你的位置:首頁 > 電路保護 > 正文

包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案

發(fā)布時間:2017-01-20 責任編輯:wenwei

【導讀】MAX5953A為以太網(wǎng)供電系統(tǒng)(PoE)的用電設備(PD)提供簡單、低成本、完備的非隔離電源解決方案。該電路提供PD偵測和信號分級,符合IEEESM 802.3af標準,此外還具有可編程浪涌電流控制、集成電源開關、PWM控制器和高、低邊開關等電路。Buck降壓轉(zhuǎn)換器能夠以高于80%的效率提供0.85A、12V電壓輸出。
 
圖1電路為完備的PD供電電路,具有一個DC-DC轉(zhuǎn)換器,輸出12V電壓時可提供高達0.85A的電流。MAX5953A內(nèi)置高邊、低邊功率開關FET,低邊FET不能配置為同步整流二極管。因此,buck轉(zhuǎn)換器僅使用高邊FET。因為IC內(nèi)部的限流電路工作時利用低邊FET電流產(chǎn)生的壓降,該電路不具備自動電流限制功能。啟動時,保險絲F1提供短路保護。
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖1. 包含一個12V、0.85A buck轉(zhuǎn)換器的PD原理圖
 
MAX5953具有如下特性:
 
1.TVS二極管D1用于抑制瞬間尖峰電壓和反向電壓。
 
2.該電路根據(jù)輸入電壓不同工作在三種模式:PD偵測模式、PD分級模式和PD供電模式。使用或沒有使用二極管電橋情況下的電壓門限都符合IEEE 802.3af標準。
 
  • 在PD偵測模式下,供電設備(PSE)在VIN施加兩個1.4V至10.1V、最小步長為1V的電壓,并記錄這兩點對應的電流測量值。PSE隨后計算ΔV/ΔI,確認25.5kΩ的特征電阻R1是否存在。此模式下,MAX5953A的絕大部分內(nèi)部電路是關斷的,且偏置電流低于10µA。
  • 在分級模式下,PSE根據(jù)PD的功耗要求對PD進行分級。電阻R2 (255Ω)通知PSE,PD將在最大功率為6.49W至12.95W的3級模式下工作。當電源進入供電模式時,分級電流關斷。
  • 當VIN上升到38V UVLO門限電壓以上時,MAX5953A進入供電模式并逐漸打開內(nèi)部MOSFET,抑制浪涌電流。
 
3.完成開啟過程,且VOUT - VEE = 1.23V時,PGOOD進入漏極開路模式。軟啟動電容C15由內(nèi)部33µA的上拉電流充電,給DC-DC轉(zhuǎn)換器提供軟啟動。通過設定分壓電阻R6/R7和1.33V的DCUVLO的電壓門限,DC-DC轉(zhuǎn)換器在達到VOUT = -30V (相對于V+)以前沒有開始工作。
 
4.因為3級功率限制最大功率為12.95W,當輸出電壓為12V、電源轉(zhuǎn)換效率為80%時,負載電流限制在0.85A。
 
熱插拔電路說明
 
UVLO的默認啟動電壓為38.6V,默認關斷電壓約為30V。利用V+和VEE間的分壓電阻(中心抽頭接在UVLO)可以將UVLO的啟動、關斷電壓設置在12V至67V之間的任意值。
 
達到UVLO門限電壓時,以10µA電流給FET柵極充電,內(nèi)置FET將緩慢導通。緩慢的導通過程使100µF電容C6的充電電流最小。該電路中,OUT的熱拔插輸出電壓以大約910mV/ms的速率下降,電壓作用到輸入端大約8ms后開始下降,見圖2。
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖2. 熱拔插啟動和斜坡時序
 
CH1 = VSS, CH2 = VOUT
 
PWM電路說明
 
DC-DC轉(zhuǎn)換器是典型的buck轉(zhuǎn)換器,使用內(nèi)部高邊FET和外部肖特基同步整流二極管。輸入電壓范圍為30V (由DCUVLO的分壓電阻設置)至60V,該范圍對應的降壓比為最小2.5:1至最大5:1,對應的占空比為20%至40%。開關頻率由R4、C4設定為532kHz,以提供最小420ns的導通脈沖寬度,保持低開關損耗。
 
軟啟動過程包括一下操作時序:限制OPTO反饋電壓使其不要比CSS端電壓高出1.45V,由內(nèi)部33µA電流源給CSS端電容充電。PGOOD將CSS初始電壓箝位至GND,而當OUT與VEE之間的差值小于1.2V時,熱拔插功能完成,PGOOD釋放。該過程允許啟動時反饋信號緩慢上升,緩慢增大占空比可以避免輸出過沖。啟動時OPTO引腳的上升斜率體現(xiàn)了軟啟動特性(圖3),當VOPTO電壓約為2V時,斜坡電壓處于正常工作狀態(tài)。圖4所示為重載時的情況,圖5所示為輕載時的工作情況。
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖3. 軟啟動時序
 
CH1 = VOPTO, CH2 = VCSS; CSS = 470nF
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖4. PWM通過OPTD的反饋電壓與RAMP電壓比較進行控制
 
CH1 = VOPTO, CH2 = VRAMP, ILOAD = 400mA
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖5. 低電流負載條件下,PWM斜坡電壓與OPTO的反饋電壓進行比較 
 
CH1 = VOPTO, CH2 = VRAMP, ILOAD = 50mA
 
控制器工作在電壓模式,前饋電壓斜率由R3和C3設定。OPTO信號與RAMP電壓進行比較。
 
啟動時的輸出電壓過沖
 
477nF的軟啟動電容(CSS)將過沖電壓降至1%甚至更低,如圖6所示。較小的CSS電容能夠在一定程度上控制上電過程出現(xiàn)的輸出電壓過沖,如圖7所示,當CSS = 100nF時,電壓過沖達到7.7%。更小的CSS可加速啟動過程,但卻增大了上電時的輸出電壓過沖。
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖6. 啟動過程的輸出電壓過沖
 
CH1 = VOUT, CH2 = VCSS, CSS = 470nF, RLOAD = 30Ω (IOUT = 400mA @ 12V),過沖電壓 ≈ 0
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖7. 啟動過程的輸出電壓過沖
 
CSS = 100nF
 
電流限制
 
雖然MAX5953內(nèi)部集成有高邊和低邊FET,但低邊FET只用于正激或反激電路中的變壓器耦合隔離。高邊、低邊FET同時導通,電流檢測通過檢測低邊FET的壓降實現(xiàn)。因為沒有使用低邊FET,本電路沒有電流檢測功能。發(fā)生短路時,利用保險絲保護MAX5953和其內(nèi)部調(diào)整管FET不受損壞。然而,一旦DC-DC轉(zhuǎn)換器啟動,保險絲的輸出短路保護作用將很有限,因為保險絲的熱遲滯可能導致通道上的器件損壞。
 
負載瞬變
 
圖8所示的負載瞬變情況發(fā)生在從1/2到滿負荷的負載突變。在輸出端接一個固定400mA的負載,并聯(lián)一個400mA脈沖負載。如果負載從0mA跳至400mA時,負載電壓在瞬間發(fā)生劇大變化,如圖9;而圖8所示情況負載電壓突變較低,當負載電流高于50mA時幾乎與直流負載無關。
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖8. 1/2到滿負荷的負載躍變
 
CH1 = VOUT, CH2 = ΔIOUT, 瞬變 = 1.2%, IOUT = 800mA→400mA→800mA
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖9. 從0到1/2滿負荷的負載躍變
 
CH1 = VOUT, CH2 = ΔIOUT, 瞬變 = 5%至10%, IOUT = 400mA→mA→400mA
 
轉(zhuǎn)換效率
 
轉(zhuǎn)換效率介于負載電流為250mA時的71%至負載電流為1A時的80.5%。圖10顯示當850mA滿負荷電流時,轉(zhuǎn)換效率將大于80%。
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖10. VIN = 48V時的轉(zhuǎn)換效率
 
環(huán)路穩(wěn)定性
 
電壓模式控制環(huán)路存在兩個極點:4.1kHz LCOUT (L1、C9)諧振頻率,和一個由于COUT的低ESR產(chǎn)生的高于4MHz的零點。使用3類環(huán)路補償可使單位增益帶寬高于LCOUT的諧振頻率。兩個零點設置為2.1kHz (R9、C14)和4.1kHz (R11、C15),補償LCOUT的兩個諧振極點,兩極點置于20kHz (R9、C13)和125kHz (R10、C15)。從圖11控制環(huán)路波特圖可以看出,單位增益頻率為19.4kHz,相位裕量為59°。
 
包含12V buck轉(zhuǎn)換器的低成本用電設備完整方案
圖11. 環(huán)路波特圖
 
應用
 
這個簡單的buck轉(zhuǎn)換器非常適合PD應用,低成本的非變壓器耦合結構,唯一的不足是短路情況下有可能出現(xiàn)保護失效。
 
本文來源于Maxim。
 
 
 
 
推薦閱讀:


一種能降低熱插拔控制電路電流的方案
自動駕駛六大潛在突破點:傳感器/車輛系統(tǒng)集成/V2X等
車載指紋識別:安全、便捷,抑或二者兼得?
隱藏式指紋識別技術面臨哪些問題?
擺V拍照會被盜指紋?安全專家卻持不同意見

 
 
要采購轉(zhuǎn)換器么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉