你的位置:首頁 > 互連技術(shù) > 正文

淺析直接數(shù)字頻率合成技術(shù)

發(fā)布時間:2023-05-16 來源:ADI 責(zé)任編輯:wenwei

【導(dǎo)讀】直接數(shù)字頻率合成技術(shù) (Direct Digital Synthesis),簡稱 DDS,它是一種基于數(shù)字電子電路的頻率合成技術(shù),用于產(chǎn)生周期性波形,通常應(yīng)用在一些頻率激勵 / 波形發(fā)生、頻率相位調(diào)諧和調(diào)制、低功耗 RF 通信系統(tǒng)、液體和氣體測量;還有接近度、運動和缺陷檢測等傳感器場合也可以找到 DDS 的身影??傮w而言,目前從低頻到幾百 Mhz 的正弦波、三角波產(chǎn)生,絕大多數(shù)都使用了 DDS 芯片。本文將由ADI代理商駿龍科技的工程師Luke Lu引領(lǐng)大家更進一步地了解 DDS。


DDS 的核心思想


對于一個正弦波來說,通常情況下其幅值可用以下公式得出:


A(t) = sin(ωt)


不過,這類正弦波是非線性曲線,因此除非通過分段構(gòu)建,否則不易生成。另一方面,角度信息本質(zhì)上是線性的。也就是說,每個單位時間內(nèi),相位角度會旋轉(zhuǎn)固定角度。角速率取決于信號頻率,也即 ω= 2πf。正弦波幅值和相位隨時間的變化,如下圖 (圖1) 所示:


5.jpg

圖1 正弦波幅值和相位隨時間的變化


已知正弦波的相位是線性的,如果給定參考時間間隔 (時鐘周期),則可以確定該周期內(nèi)的相位旋轉(zhuǎn)情況。


ΔPhase = ωΔt,求出 ω,ω = ΔPhase/Δt = 2πf


求出 f,并用參考時鐘頻率替換參考周期 (1/ fMCLK = Δt)


f = ΔPhase × fMCLK/2π


該如何理解上述的核心思想,我們來舉一個簡單的例子:先假設(shè) DDS 有一個固定時鐘,MCLK,為 36Mhz,那么每個脈沖的周期為 27.78ns。有一個正弦波的 “相位-幅度” 表,具有足夠細密的相位步長,0.01°;那么一個完整的正弦波表就需要 36000 個點。完整的正弦波相位幅值表,如下圖  (圖2) 所示:


6.jpg

圖2 完整的正弦波相位幅值表


從上圖 (圖2) 可以看到,從相位 0° 開始,一直到相位 0.11°,雖然正弦波的幅值一直在增加,但是時鐘沒有增加到全幅度的 1/1024,因此 DAC 輸出的都為一樣的值??梢韵胂筮@ 36000 個點記錄了一個標(biāo)準(zhǔn)正弦波的全部。顯然,36000 個 CLK 為正弦波的周期,即 1ms,其頻率為 1kHz:


7.jpg


DDS 的核心思想就建立在此公式上:改變步長輸出 m,可以改變輸出頻率。


DDS 的組成內(nèi)核


DDS 技術(shù)的核心由相位累加器 PA、相位幅度表和數(shù)模轉(zhuǎn)換器 DAC 組成。我們以 AD9834 為例,調(diào)諧字最大可以達到 2^28=268435456 個點,遠比上面我們說的 36000 個點要多,說明實際的 DDS 在相位分辨率上比 0.01° 要小得多。AD9834 功能框圖,如下圖 (圖3)  所示:


1681717565733362.jpg

圖3 AD9834 功能框圖


輸入一個技術(shù)步長 m,外部 MCLK 出現(xiàn)一個脈沖,PA 完成一次累加。那么完成一個周期 360° 旋轉(zhuǎn),需要時間為: 


9.jpg


因此輸出正弦波頻率為:


10.jpg


有了上文的理論鋪墊,我們可以得出一個 DDS 的完整工作流程,如下圖 (圖4) 所示:


11.jpg

圖4 DDS 工作流程


DDS的混疊現(xiàn)象


DDS 的輸出是根據(jù)奈奎斯特采樣原理進行采樣的信號,輸出的信號頻率相當(dāng)于需要采樣的信號,而輸入的 MCLK 相當(dāng)于采樣頻率。具體而言,其輸出頻譜包含基波和混疊信號 (鏡像),且鏡像頻率為參考時鐘頻率和所選輸出頻率的倍數(shù)。DDS 輸出頻譜,如下圖 (圖5) 所示:


12.jpg

圖5 DDS 輸出頻譜


通過 ADI 官網(wǎng)的 DDS 仿真工具能夠直觀地看出混疊對 DDS 輸出信號的影響。使用 AD9834 仿真輸入輸出選項,如下圖 (圖6) 所示:


13.jpg

圖6 使用 AD9834 仿真輸入輸出選項


使用 AD9834 輸出頻域,如下圖 (圖7) 所示:


1681717510186592.jpg

圖7 使用 AD9834 輸出頻域圖


使用 AD9834 輸出時域,如下圖 (圖8) 所示:


1681717473607473.jpg

圖8 使用 AD9834 輸出時域圖


可以看出,由于混疊信號的影響,輸出的 2Mhz 正弦波存在很大程度的失真,但混疊可以通過濾波器進行改善。以下我們來試試,設(shè)置 DDS 后端濾波器,如下圖 (圖9) 所示:


16.jpg

圖9 DDS 后端濾波器設(shè)置


此時 DDS+ 低通濾波器后輸出時域,如下圖 (圖10) 所示,輸出的 2Mhz 正弦波已有改善。


1681717440154297.jpg

圖10 DDS+ 低通濾波器后輸出時域圖


總結(jié)


本文介紹了 DDS 的核心思想,DDS 的主要組成部分、以及使用 DDS 常見的信號失真導(dǎo)致原因。關(guān)于 DDS 更深層次的學(xué)習(xí),比如 DDS 雜散問題,我們將會在未來的文章中與大家探討。



免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。


推薦閱讀:


思特威:人工智能浪潮,將機器視覺沖向新藍海

使用NCP1623A設(shè)計緊湊高效的PFC級的關(guān)鍵步驟

CAN節(jié)點經(jīng)常損壞?多半是少了浪涌抑制器

干簧管開關(guān)與干簧管繼電器

終結(jié)智能家居“碎片化”時代的,為什么是 Matter?

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉