同理對于Q2開啟時,如果電感電流為正,那么當我們首先關(guān)閉Q1管時,Vsw就會被電感電流拉低到0,因為iL》0, Q2的Coss會discharged到0,然后我們再開啟Q2,就可以達到ZVS了。這里我有一張其他Topology的PWM converter的波形圖,也和buck工作原理類似,大概可以看看基本原理,也就是電感電流為負時,Q1可以實現(xiàn)ZVS,讓Vsw的ringing比較小。而當電感電流為正時,實現(xiàn)不了ZVS,Vsw的ringing就比較大了。
淺析MOSFET管開關(guān)電流波形問題!
發(fā)布時間:2018-08-29 責任編輯:lina
【導讀】MOS管開關(guān)電路是利用MOS管柵極(g)控制MOS管源極(s)和漏極(d)通斷的原理構(gòu)造的電路。因MOS管分為N溝道與P溝道,所以開關(guān)電路也主要分為兩種。
MOS管開關(guān)電路的定義
MOS管開關(guān)電路是利用MOS管柵極(g)控制MOS管源極(s)和漏極(d)通斷的原理構(gòu)造的電路。因MOS管分為N溝道與P溝道,所以開關(guān)電路也主要分為兩種。
1、 P溝道MOS管開關(guān)電路
路編輯PMOS的特性,Vgs小于一定的值就會導通,適合用于源極接VCC時的情況(高端驅(qū)動)。需要注意的是,Vgs指的是柵極G與源極S的電壓,即柵極低于電源一定電壓就導通,而非相對于地的電壓。但是因為PMOS導通內(nèi)阻比較大,所以只適用低功率的情況。大功率仍然使用N溝道MOS管。
2、 N溝道m(xù)os管開關(guān)電路
NMOS的特性,Vgs大于一定的值就會導通,適合用于源極接地時的情況(低端驅(qū)動),只要柵極電壓大于參數(shù)手冊中給定的Vgs就可以了,漏極D接電源,源極S接地。需要注意的是Vgs指的是柵極G與源極S的壓差,所以當NMOS作為高端驅(qū)動時候,當漏極D與源極S導通時,漏極D與源極S電勢相等,那么柵極G必須高于源極S與漏極D電壓,漏極D與源極S才能繼續(xù)導通。
圖1
這里就用MOSFET代替BJT了,所以ids = ic,Vds=Vce,Coss也就是Cds代表輸出電容。簡單來說就是當MOS管一開始導通時輸出電容Coss還保持Vds電壓,隨著Ids電流越來越大,Vds電壓終于保持不住,開始下降。直到管子完全開啟。比較詳細的開啟過程是由Miller Plateau造成的,這里借用了網(wǎng)上一些解釋Miller Plateau的圖,如果有不清楚的就請見諒了。
階段1,Vgs 《 Vth,管子是關(guān)斷的,所以Ids = 0,Vds=high,ig充電Cgs。
階段2,Vgs 》 Vth,管子開啟,Ids從0增加到iL被外部電流源電感鉗住,Coss(Cds)上電壓不能突變,保持Vds。
階段3,進入Miller plateau,Vgs 》 Vth,管子仍然保持開啟,Coss開始discharge,Vds電壓開始下降,于此同時Cgd開始被ig充電。Vg保持不變。
階段4,Vd下降到接近0點,ig繼續(xù)給ig充電Cgs和Cgd充電。
階段5,Vg到達gate driver預(yù)定的電壓,管子開啟過程完成。
關(guān)斷過程和開啟過程類似,也會有Miller plateau效應(yīng)。
我們可以看到,如果如果MOS管開啟時VDS上有原始電壓,那么MOS開啟過程中就會有Ids和Vds的重疊,那么會帶來Switching Loss。由于Coss上的能量在極短時間內(nèi)被釋放,電容上能量會損失掉(換算為Loss為0.5*Coss*Vds^2*fs),而且只要是非零電壓開啟(Non Zero Voltage Switching),會給PCB和MOS的寄生電感與電容形成的諧振腔(resonant tank)引入比較大的dv/dt或者di/dt激勵,引起比較大的ringing,甚至超過管子的額定電壓,燒毀管子。
那么我們可以避免這種情況的發(fā)生嗎?答案是可以的,也就是很多人提到的Zero Voltage Switching,雖然會付出一定的代價。我們先看如何能實現(xiàn)軟開關(guān)開啟Zero Voltage Switching Turn on。
圖2
實現(xiàn)ZVS turn on很簡單,只需要在我們開啟管子前,Vds上的電壓為零就好,這樣Ids和Vds就沒有重疊了,turn on switching loss為零,沒有high di/dt, dv/dt問題,沒有ringing,完美!那么如何實現(xiàn)ZVS turn on呢?個人覺得分兩種情況討論:1為PWM converter,2為resonant converter(諧振變換器)。
一, 對于PWM converter,就拿最簡單的兩個管子的half bridge(其實也就是buck converter)做例子。
圖3
對于half bridge 實現(xiàn)ZVS turn on,我們希望當上管Q1開啟時電流是流進switching node (vsw)的,也就是圖中電感電流為負值,當下管Q2開啟時我們希望電流是流出switching node (vsw)的,也就是電感電流為正值。為什么這樣就可以實現(xiàn)ZVS turn on了呢?我們就看上管Q1開啟過程。如果電感電流iL為負,這時候我們先關(guān)閉Q2,這時候Q1還未開啟,在這個deadTIme中iL會charge Q2的Coss,使Vsw抬高到Vin,當然不能超過Vin,因為Q1的body diode會導通,鉗位住Vsw到Vin,這時候Q1的Vds就是Vin-Vsw=0,這時候我們開啟Q1就實現(xiàn)ZVS了。
同理對于Q2開啟時,如果電感電流為正,那么當我們首先關(guān)閉Q1管時,Vsw就會被電感電流拉低到0,因為iL》0, Q2的Coss會discharged到0,然后我們再開啟Q2,就可以達到ZVS了。這里我有一張其他Topology的PWM converter的波形圖,也和buck工作原理類似,大概可以看看基本原理,也就是電感電流為負時,Q1可以實現(xiàn)ZVS,讓Vsw的ringing比較小。而當電感電流為正時,實現(xiàn)不了ZVS,Vsw的ringing就比較大了。
同理對于Q2開啟時,如果電感電流為正,那么當我們首先關(guān)閉Q1管時,Vsw就會被電感電流拉低到0,因為iL》0, Q2的Coss會discharged到0,然后我們再開啟Q2,就可以達到ZVS了。這里我有一張其他Topology的PWM converter的波形圖,也和buck工作原理類似,大概可以看看基本原理,也就是電感電流為負時,Q1可以實現(xiàn)ZVS,讓Vsw的ringing比較小。而當電感電流為正時,實現(xiàn)不了ZVS,Vsw的ringing就比較大了。
圖4
二, 對于resonant converter,其實道理類似,我們也希望在我們開啟管子前,Vds上的電壓為零。那么對于resonant converter的half bridge,我們希望看到的impedance為inducTIve,也就是感性的,這樣switching node流出的電流I就會滯后于電壓V,現(xiàn)在ZVS turn on。
圖5
這是因為如果電流I是滯后與電壓V的,這樣在Q1開啟之前電流I為負值就會charge Q2的Coss,同時discharge Q1的Coss,讓V到Vin,這樣Q1就實現(xiàn)ZVS turn on了。Q2開啟之前,電流I為正,也會discharge Q2的Coss,和charge Q1的Coss,讓V到0,這樣Q2就實現(xiàn)ZVS了。
總結(jié)起來,要實現(xiàn)ZVS turn on,對于PWM,需要電感電流為負,而且需要足夠的deadTIme;對于resonant converter,需要impedance為inducTIve,而且也需要deadtime。那么有人可能要問,對于PWM converter到底電感電流為多負?deadtime至少為多少可以保證ZVS?對于resonant converter, impedance 到底為多少?deadtime為多少可以保證ZVS?
要回答這個定量問題,其實是不那么簡單的。對于PWM converter,參考quasi-square-wave ZVS buck converters,我們是可以畫出state plane,然后根據(jù)state plane圖的幾何關(guān)系定量分析出來的,但是非常繁瑣,常常是七八個三角函數(shù)等式求解。所以我個人愚見,在設(shè)計上,就讓開關(guān)頻率小點,電感值小點,讓電感電流ripple足夠大,能達到負值就差不多了。
對于resonant converter,倒是可以簡單地通過積分方法,算出i與t的積分,讓這個it積分大于Coss上的charge就行。比如已知impedance,算出V與I的phase shift,然后換算成時間td,然后在td上對電感電流進行積分,只要這個積分大于等于Coss*Vin就行了。
圖6
說了soft switching, ZVS這么多好處,我們談?wù)剆oft switching的弊端。對于PWM converter我們可以看到為了實現(xiàn)ZVS,我們減小了電感值,讓電感電流ripple變大,最終達到負值,實現(xiàn)了ZVS,但是付出的代價就是inductor current的RMS值變大,各個元器件的導通損耗(conduction loss)變大,所以我們是犧牲了conduction loss換取switching loss和小ringing。而且如果輸出電流越大,我們需要實現(xiàn)ZVS的難度更大,需要進一步增大ripple,造成RMS電流進一步增大,很有可能得不償失,造成converter整體效率下降。
對于resonant converter,在頻率很高的情況下,有時候需要讓impedance非常inductive,也就是I滯后于V非常厲害才能有足夠的charge q來實現(xiàn)ZVS,這其實也是變相降低了有功功率的傳輸,因為V和I的phase lag比較大,造成了converter的circulating current比較大,RMS電流值增大,也是增大了conduction loss。所以在設(shè)計或者考慮ZVS等soft switching時需要對系統(tǒng)有個整體loss的把握,在conduction loss和switching loss之間做好trade-off,這樣才能設(shè)計出效率最高,最魯棒的converter。
另外soft switching軟開關(guān)技術(shù)還有ZVS turn off,Zero Current Switching turn on,Zero Current Switching turn off。這里就簡單介紹了ZVS turn on,因為ZVS turn on對于MOSFET和GaN比較重要,其他softswitching技術(shù)這里就不一一敘述了。
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識別和認證的新型指紋傳感器IC
- Vishay推出負載電壓達100 V的業(yè)內(nèi)先進的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級電容的“外衣”,看看超級電容“超級”在哪兒
- DigiKey 誠邀各位參會者蒞臨SPS 2024?展會參觀交流,體驗最新自動化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
音頻IC
音頻SoC
音頻變壓器
引線電感
語音控制
元件符號
元器件選型
云電視
云計算
云母電容
真空三極管
振蕩器
振蕩線圈
振動器
振動設(shè)備
震動馬達
整流變壓器
整流二極管
整流濾波
直流電機
智能抄表
智能電表
智能電網(wǎng)
智能家居
智能交通
智能手機
中電華星
中電器材
中功率管
中間繼電器