配置AD7616用于高動態(tài)范圍應(yīng)用的設(shè)置示例
發(fā)布時間:2020-05-02 來源:Aidan Frost 責(zé)任編輯:wenwei
【導(dǎo)讀】AD7616是一款雙通道、同步采樣、16通道、16位逐次逼近寄存器(SAR)型模數(shù)轉(zhuǎn)換器(ADC)。AD7616非常適合能源分配市場中的保護(hù)和測量應(yīng)用。AD7616具備一系列針對保護(hù)和測量應(yīng)用而設(shè)計的特性,例如低漂移的集成式可編程增益放大器(PGA)、1 MΩ輸入阻抗、高度靈活的可編程序列器和最高128倍過采樣功能。本應(yīng)用筆記詳細(xì)說明如何配置AD7616眾多工作模式中的一種以實現(xiàn)100 dB以上的高動態(tài)范圍。本應(yīng)用筆記旨在用作快速入門參考,以便用戶將AD7616集成到應(yīng)用當(dāng)中。
動態(tài)范圍要求
根據(jù)具體應(yīng)用,目標(biāo)輸入信號幅度可能很不相同。例如,相對于故障狀況,繼電器保護(hù)應(yīng)用的信號量程一般很小,但用戶可能希望同時測量標(biāo)稱狀況和故障狀況。這種測量需要一個具有大動態(tài)范圍的ADC來將這些較小輸入信號解析到所需的精度。此類應(yīng)用所需的動態(tài)范圍可通過下式計算:
其中:
DR為動態(tài)范圍。
SignalMAX為ADC可以分辨的最大信號。
SignalMIN為ADC可以分辨的最小信號。
根據(jù)應(yīng)用的精度要求,用戶可能希望精度高于16位。此要求可利用AD7616并通過下述方法實現(xiàn):
1. 對模擬輸入進(jìn)行過采樣以實現(xiàn)高達(dá)96 dB的信噪比(SNR)。
2. 對信號進(jìn)行雙增益采樣以提高有效動態(tài)范圍。
使用AD7616的±10 V輸入范圍,在無任何過采樣的情況下,用戶通??蓪崿F(xiàn)90.5 dB SNR。使用64倍過采樣比(OSR)時,此SNR提高到96 dB最大值。類似地,對于±2.5 V范圍,無過采樣時可實現(xiàn)87 dB SNR,OSR為64時可實現(xiàn)93.9 dB SNR。
表1. 過采樣所實現(xiàn)的SNR
考慮一個來自傳感器的輸入信號,其相對于輸入范圍一般非常小,但可能超量程(例如啟動期間或故障狀況下),如圖1所示。
圖1. 超量程信號
將兩個AD7616通道合并以對同一輸入信號進(jìn)行采樣,便可實現(xiàn)較大動態(tài)范圍。AD7616每個通道有一個PGA,經(jīng)過配置可接受±2.5 V、±5 V或±10 V的輸入信號。在對同一信號進(jìn)行采樣時使用不同的增益,是提高動態(tài)范圍的關(guān)鍵。圖2顯示了一個典型的雙采樣設(shè)置,其使用AD7616每個ADC的一個通道。AD7616包括兩個ADC內(nèi)核和兩個8:1多路復(fù)用器,總共有16個通道。本例使用每個多路復(fù)用器上的一個通道,從而可以對兩個通道同時采樣,如圖2所示。
圖2顯示了一個典型的雙采樣設(shè)置,其使用AD7616每個ADC的一個通道。AD7616包括兩個ADC內(nèi)核和兩個8:1多路復(fù)用器,總共有16個通道。本例使用每個多路復(fù)用器上的一個通道,從而可以對兩個通道同時采樣,如圖2所示。
圖2. 雙增益采樣設(shè)置
圖 2 所示連接是監(jiān)控三相電力系統(tǒng)某一相的典型連接,可以根據(jù)需要擴展到監(jiān)控其他相。本應(yīng)用筆記所述的配置假設(shè) ADC 通道按照表 2 所示進(jìn)行分配,從而監(jiān)控三相。
表2. ADC通道配置
表 1 顯示,對于±2.5 V 范圍,OSR 為 64 時,過采樣可將 SNR提高到 94 dB。對于同樣的范圍,以低得多的 4 倍 OSR 進(jìn)行過采樣時,可以解析的最小信號約為±88 μV。已知±2.5 V范圍、OSR 為 4 倍時 SNR 為 89 dB,最小信號可計算如下:
其中:
SNR 為信噪比。
最大信號為施加到模擬輸入端的信號的最大幅度。
最小信號為相對于本底噪聲的最小可分辨信號的幅度。
最大信號就是輸入范圍;本例中為±2.5 V。使用此輸入范圍,重新整理并求解該方程便可確定 ADC 可以解析的最小信號。計算結(jié)果為±88 μV。
使用±10 V和±2.5 V兩種輸入范圍進(jìn)行采樣,可以實現(xiàn)的最高動態(tài)范圍為:
其中,DR為動態(tài)范圍。
引腳配置
AD7616可以配置為硬件或軟件工作模式。硬件模式使用引腳控制來配置序列器、模擬輸入范圍和過采樣比等選項。軟件模式則是通過并行接口或串行接口對片上寄存器進(jìn)行編程,并可解鎖器件的更多功能。本設(shè)置示例使用軟件模式,通過并行接口編程。利用串行接口配置器件同利用并行接口對器件編程相似。有關(guān)詳細(xì)信息,參見AD7616數(shù)據(jù)手冊。
對于本例,在對片上寄存器編程之前,按照表3和圖3所示配置控制引腳,然后上電。復(fù)位解除時或發(fā)生完全復(fù)位之后,器件會鎖存硬件控制引腳值。對配置的任何改變也需要完全復(fù)位。
表3. 硬件引腳配置
圖3. 硬件控制引腳連接
配置好控制引腳之后,將適當(dāng)?shù)碾妷禾峁┙oVCC引腳和VDRIVE引腳,以給AD7616供電。電源穩(wěn)定后,需要讓器件完全復(fù)位。有關(guān)詳細(xì)信息,參見AD7616數(shù)據(jù)手冊。
對AD7616編程
在軟件模式下,AD7616可通過片上寄存器靈活配置。這些寄存器可通過并行或串行接口訪問,有16位寬。本應(yīng)用筆記所述的例子使用并行接口。所需寄存器寫操作的流程圖如圖4所示。下述寄存器寫命令利用可編程序列器將AD7616配置為對三個不同信號進(jìn)行雙采樣。
首先寫入配置寄存器。配置寄存器用在軟件模式下,用來配置ADC的許多主要功能,包括序列器、突發(fā)模式、過采樣和CRC操作。
將命令0x8460寫入配置寄存器,使能序列器的突發(fā)模式。突發(fā)模式需要一個CONVST脈沖來啟動序列器堆棧寄存器中配置的每個通道對的轉(zhuǎn)換。然后存儲轉(zhuǎn)換結(jié)果,直至用戶準(zhǔn)備回讀結(jié)果。有關(guān)詳細(xì)信息,參見AD7616數(shù)據(jù)手冊。
接下來配置輸入范圍寄存器。如表2所示,使能六個通道進(jìn)行采樣。三個通道設(shè)置為±2.5 V范圍,另三個通道設(shè)置為±10 V范圍。有四個輸入范圍寄存器,但本例僅需要兩個:寄存器A1和寄存器B1。寫入命令0x8815以將V0A至V2A通道的輸入范圍配置為±2.5 V范圍。寫入命令0x8C3F以將V0B至V2B通道的輸入范圍配置為±10 V范圍。
最后寫入序列器堆棧寄存器。序列器寄存器結(jié)構(gòu)形成一個32層堆棧,各層可包含兩個通道(ADC A中的任一通道和ADC B中的任一通道)。序列器編程如表4所示。
表4. 序列器編程
堆棧中最后一層(本例中為第三層)的SSREN位設(shè)置為邏輯1,以定義堆棧的最后一層。序列器達(dá)到SSREN位設(shè)為1的層之后,便將堆棧指針復(fù)位到堆棧的第一層。然后重復(fù)該序列。
AD7616現(xiàn)在已按照表2所示的配置,對三個信號進(jìn)行采樣。向器件寫入命令0x0000,使其返回到讀取模式并開始采樣。表5顯示了本例寄存器編程摘要。
圖4. 寄存器配置流程圖
表5. 寄存器摘要
轉(zhuǎn)換
在突發(fā)模式下,單個CONVST脈沖啟動序列器堆棧寄存器中配置的每個通道的轉(zhuǎn)換。器件內(nèi)部產(chǎn)生完成序列所需的其余CONVST信號。圖5顯示了器件在該模式下的操作。復(fù)位解除時,片內(nèi)寄存器進(jìn)行編程,如圖4所示。器件切換回轉(zhuǎn)換讀取模式之后,需要進(jìn)行一次偽轉(zhuǎn)換以將新配置鎖存到器件中。然后,用戶必須提供一個CONVST脈沖以啟動整個序列的轉(zhuǎn)換。序列完成后(BUSY由高電平變?yōu)榈碗娖剑?,用戶便可回讀三個通道對的轉(zhuǎn)換結(jié)果,如圖5所示。
圖5. 突發(fā)工作模式
讀取轉(zhuǎn)換結(jié)果
在突發(fā)模式下,回讀轉(zhuǎn)換結(jié)果發(fā)生在序列中的所有通道完成轉(zhuǎn)換之后,如圖5所示。假設(shè)通道數(shù)為N,過采樣比為x,則完成轉(zhuǎn)換和轉(zhuǎn)換結(jié)果回讀的周期時間(tCYCLE)可估計如下:
其中:
利用并行接口回讀轉(zhuǎn)換結(jié)果,即便使能突發(fā)序列器,用戶也能維持最大吞吐速率。將AD7616數(shù)據(jù)手冊中的適當(dāng)數(shù)值代入tCYCLE計算公式,得到以4倍OSR轉(zhuǎn)換三個通道對所需的周期時間為11.945 μs。此代換實現(xiàn)的吞吐速率為每通道83 kSPS。
結(jié)語
利用較小的±2.5 V輸入范圍設(shè)置,通過監(jiān)控ADC A輸出,用戶可以檢測過壓和過流狀況。借助這種方法,用戶可以利用±2.5 V范圍設(shè)置的滿量程幅度范圍來保護(hù)動態(tài)范圍。然后,用戶可以切換到監(jiān)控較大的±10 V輸入范圍,以捕獲故障狀況的性質(zhì)和幅度。此方法使得用戶無需在ADC之前應(yīng)用動態(tài)輸入范圍調(diào)整,而且AD7616的通道密度讓雙采樣成為一個高性價比選擇。本應(yīng)用筆記證明,使用雙采樣設(shè)置和4倍OSR,AD7616動態(tài)范圍可提高到101 dB。在使能過采樣的情況下對三個通道進(jìn)行采樣,可以保持每通道83 kSPS以上的吞吐速率。在實際意義上,對于60 Hz輸入信號,使用本應(yīng)用筆記所述方法,每個線路周期用戶可以收集1300個以上的樣本。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計
- ADI電機運動控制解決方案 驅(qū)動智能運動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 功率器件熱設(shè)計基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴散
- 準(zhǔn) Z 源逆變器的設(shè)計
- 第12講:三菱電機高壓SiC芯片技術(shù)
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 意法半導(dǎo)體推出首款超低功耗生物傳感器,成為眾多新型應(yīng)用的核心所在
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
單向可控硅
刀開關(guān)
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖